|
|
|
""" Selective Kernel Networks (ResNet base)
|
|
|
|
|
|
|
|
Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586)
|
|
|
|
|
|
|
|
This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268)
|
|
|
|
and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer
|
|
|
|
to the original paper with some modifications of my own to better balance param count vs accuracy.
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
|
|
|
|
from torch import nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import SelectiveKernel, ConvBnAct, create_attn
|
|
|
|
from .registry import register_model
|
|
|
|
from .resnet import ResNet
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'conv1', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'skresnet18': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'),
|
|
|
|
'skresnet34': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth'),
|
|
|
|
'skresnet50': _cfg(),
|
|
|
|
'skresnet50d': _cfg(
|
|
|
|
first_conv='conv1.0'),
|
|
|
|
'skresnext50_32x4d': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBasic(nn.Module):
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
|
|
|
|
sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU,
|
|
|
|
norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
|
|
|
|
super(SelectiveKernelBasic, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer)
|
|
|
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
|
|
|
|
assert base_width == 64, 'BasicBlock doest not support changing base width'
|
|
|
|
first_planes = planes // reduce_first
|
|
|
|
outplanes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
self.conv1 = SelectiveKernel(
|
|
|
|
inplanes, first_planes, stride=stride, dilation=first_dilation, **conv_kwargs, **sk_kwargs)
|
|
|
|
conv_kwargs['act_layer'] = None
|
|
|
|
self.conv2 = ConvBnAct(
|
|
|
|
first_planes, outplanes, kernel_size=3, dilation=dilation, **conv_kwargs)
|
|
|
|
self.se = create_attn(attn_layer, outplanes)
|
|
|
|
self.act = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
self.drop_block = drop_block
|
|
|
|
self.drop_path = drop_path
|
|
|
|
|
|
|
|
def zero_init_last_bn(self):
|
|
|
|
nn.init.zeros_(self.conv2.bn.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
if self.se is not None:
|
|
|
|
x = self.se(x)
|
|
|
|
if self.drop_path is not None:
|
|
|
|
x = self.drop_path(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
shortcut = self.downsample(shortcut)
|
|
|
|
x += shortcut
|
|
|
|
x = self.act(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SelectiveKernelBottleneck(nn.Module):
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
|
|
cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None,
|
|
|
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None,
|
|
|
|
drop_block=None, drop_path=None):
|
|
|
|
super(SelectiveKernelBottleneck, self).__init__()
|
|
|
|
|
|
|
|
sk_kwargs = sk_kwargs or {}
|
|
|
|
conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer)
|
|
|
|
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
|
|
|
first_planes = width // reduce_first
|
|
|
|
outplanes = planes * self.expansion
|
|
|
|
first_dilation = first_dilation or dilation
|
|
|
|
|
|
|
|
self.conv1 = ConvBnAct(inplanes, first_planes, kernel_size=1, **conv_kwargs)
|
|
|
|
self.conv2 = SelectiveKernel(
|
|
|
|
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality,
|
|
|
|
**conv_kwargs, **sk_kwargs)
|
|
|
|
conv_kwargs['act_layer'] = None
|
|
|
|
self.conv3 = ConvBnAct(width, outplanes, kernel_size=1, **conv_kwargs)
|
|
|
|
self.se = create_attn(attn_layer, outplanes)
|
|
|
|
self.act = act_layer(inplace=True)
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
self.dilation = dilation
|
|
|
|
self.drop_block = drop_block
|
|
|
|
self.drop_path = drop_path
|
|
|
|
|
|
|
|
def zero_init_last_bn(self):
|
|
|
|
nn.init.zeros_(self.conv3.bn.weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.conv3(x)
|
|
|
|
if self.se is not None:
|
|
|
|
x = self.se(x)
|
|
|
|
if self.drop_path is not None:
|
|
|
|
x = self.drop_path(x)
|
|
|
|
if self.downsample is not None:
|
|
|
|
shortcut = self.downsample(shortcut)
|
|
|
|
x += shortcut
|
|
|
|
x = self.act(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _create_skresnet(variant, pretrained=False, **kwargs):
|
|
|
|
return build_model_with_cfg(
|
|
|
|
ResNet, variant, pretrained,
|
|
|
|
default_cfg=default_cfgs[variant],
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet18(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a Selective Kernel ResNet-18 model.
|
|
|
|
|
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
|
|
|
variation splits the input channels to the selective convolutions to keep param count down.
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(min_rd_channels=16, rd_ratio=1/8, split_input=True)
|
|
|
|
model_args = dict(
|
|
|
|
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs),
|
|
|
|
zero_init_last_bn=False, **kwargs)
|
|
|
|
return _create_skresnet('skresnet18', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet34(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a Selective Kernel ResNet-34 model.
|
|
|
|
|
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
|
|
|
variation splits the input channels to the selective convolutions to keep param count down.
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(min_rd_channels=16, rd_ratio=1/8, split_input=True)
|
|
|
|
model_args = dict(
|
|
|
|
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
|
|
|
zero_init_last_bn=False, **kwargs)
|
|
|
|
return _create_skresnet('skresnet34', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet50(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNet-50 model.
|
|
|
|
|
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
|
|
|
variation splits the input channels to the selective convolutions to keep param count down.
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(split_input=True)
|
|
|
|
model_args = dict(
|
|
|
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
|
|
|
zero_init_last_bn=False, **kwargs)
|
|
|
|
return _create_skresnet('skresnet50', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnet50d(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNet-50-D model.
|
|
|
|
|
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
|
|
|
variation splits the input channels to the selective convolutions to keep param count down.
|
|
|
|
"""
|
|
|
|
sk_kwargs = dict(split_input=True)
|
|
|
|
model_args = dict(
|
|
|
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
|
|
|
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs)
|
|
|
|
return _create_skresnet('skresnet50d', pretrained, **model_args)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def skresnext50_32x4d(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
|
|
|
|
the SKNet-50 model in the Select Kernel Paper
|
|
|
|
"""
|
|
|
|
model_args = dict(
|
|
|
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
|
|
|
|
zero_init_last_bn=False, **kwargs)
|
|
|
|
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args)
|
|
|
|
|