|
|
|
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
|
|
|
|
|
|
|
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
|
|
|
|
and
|
|
|
|
https://github.com/microsoft/unilm/tree/master/beit2
|
|
|
|
|
|
|
|
@inproceedings{beit,
|
|
|
|
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
|
|
|
|
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
|
|
|
|
booktitle={International Conference on Learning Representations},
|
|
|
|
year={2022},
|
|
|
|
url={https://openreview.net/forum?id=p-BhZSz59o4}
|
|
|
|
}
|
|
|
|
|
|
|
|
@article{beitv2,
|
|
|
|
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
|
|
|
|
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
|
|
|
|
year={2022},
|
|
|
|
eprint={2208.06366},
|
|
|
|
archivePrefix={arXiv},
|
|
|
|
primaryClass={cs.CV}
|
|
|
|
}
|
|
|
|
|
|
|
|
At this point only the 1k fine-tuned classification weights and model configs have been added,
|
|
|
|
see original source above for pre-training models and procedure.
|
|
|
|
|
|
|
|
Modifications by / Copyright 2021 Ross Wightman, original copyrights below
|
|
|
|
"""
|
|
|
|
# --------------------------------------------------------
|
|
|
|
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
|
|
|
# Github source: https://github.com/microsoft/unilm/tree/master/beit
|
|
|
|
# Copyright (c) 2021 Microsoft
|
|
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
|
|
# By Hangbo Bao
|
|
|
|
# Based on timm and DeiT code bases
|
|
|
|
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
|
|
|
# https://github.com/facebookresearch/deit/
|
|
|
|
# https://github.com/facebookresearch/dino
|
|
|
|
# --------------------------------------------------------'
|
|
|
|
import math
|
|
|
|
from functools import partial
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
|
|
|
|
from .registry import register_model
|
|
|
|
from .vision_transformer import checkpoint_filter_fn
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
|
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
|
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'beit_base_patch16_224': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'),
|
|
|
|
'beit_base_patch16_384': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0,
|
|
|
|
),
|
|
|
|
'beit_base_patch16_224_in22k': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth',
|
|
|
|
num_classes=21841,
|
|
|
|
),
|
|
|
|
'beit_large_patch16_224': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'),
|
|
|
|
'beit_large_patch16_384': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0,
|
|
|
|
),
|
|
|
|
'beit_large_patch16_512': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
|
|
|
|
input_size=(3, 512, 512), crop_pct=1.0,
|
|
|
|
),
|
|
|
|
'beit_large_patch16_224_in22k': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
|
|
|
|
num_classes=21841,
|
|
|
|
),
|
|
|
|
|
|
|
|
'beitv2_base_patch16_224': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
),
|
|
|
|
'beitv2_base_patch16_224_in22k': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
|
|
|
|
num_classes=21841,
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
),
|
|
|
|
'beitv2_large_patch16_224': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
|
|
|
|
crop_pct=0.95,
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
),
|
|
|
|
'beitv2_large_patch16_224_in22k': _cfg(
|
|
|
|
url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
|
|
|
|
num_classes=21841,
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
|
|
|
|
),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
|
|
|
|
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
|
|
# cls to token & token 2 cls & cls to cls
|
|
|
|
# get pair-wise relative position index for each token inside the window
|
|
|
|
window_area = window_size[0] * window_size[1]
|
|
|
|
coords = torch.stack(torch.meshgrid(
|
|
|
|
[torch.arange(window_size[0]),
|
|
|
|
torch.arange(window_size[1])])) # 2, Wh, Ww
|
|
|
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
|
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
|
|
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
|
|
|
relative_coords[:, :, 1] += window_size[1] - 1
|
|
|
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
|
|
|
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
|
|
|
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
|
|
relative_position_index[0, 0:] = num_relative_distance - 3
|
|
|
|
relative_position_index[0:, 0] = num_relative_distance - 2
|
|
|
|
relative_position_index[0, 0] = num_relative_distance - 1
|
|
|
|
return relative_position_index
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads=8, qkv_bias=False, attn_drop=0.,
|
|
|
|
proj_drop=0., window_size=None, attn_head_dim=None):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
if attn_head_dim is not None:
|
|
|
|
head_dim = attn_head_dim
|
|
|
|
all_head_dim = head_dim * self.num_heads
|
|
|
|
self.scale = head_dim ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
|
|
|
if qkv_bias:
|
|
|
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
|
|
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
|
|
|
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
|
|
else:
|
|
|
|
self.q_bias = None
|
|
|
|
self.k_bias = None
|
|
|
|
self.v_bias = None
|
|
|
|
|
|
|
|
if window_size:
|
|
|
|
self.window_size = window_size
|
|
|
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
|
|
self.relative_position_bias_table = nn.Parameter(
|
|
|
|
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
|
|
self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
|
|
|
|
else:
|
|
|
|
self.window_size = None
|
|
|
|
self.relative_position_bias_table = None
|
|
|
|
self.relative_position_index = None
|
|
|
|
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(all_head_dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def _get_rel_pos_bias(self):
|
|
|
|
relative_position_bias = self.relative_position_bias_table[
|
|
|
|
self.relative_position_index.view(-1)].view(
|
|
|
|
self.window_size[0] * self.window_size[1] + 1,
|
|
|
|
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
|
|
return relative_position_bias.unsqueeze(0)
|
|
|
|
|
|
|
|
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
|
|
|
|
B, N, C = x.shape
|
|
|
|
|
|
|
|
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
|
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
|
|
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
|
|
|
|
q = q * self.scale
|
|
|
|
attn = (q @ k.transpose(-2, -1))
|
|
|
|
|
|
|
|
if self.relative_position_bias_table is not None:
|
|
|
|
attn = attn + self._get_rel_pos_bias()
|
|
|
|
if shared_rel_pos_bias is not None:
|
|
|
|
attn = attn + shared_rel_pos_bias
|
|
|
|
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
|
|
|
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
|
|
|
window_size=None, attn_head_dim=None):
|
|
|
|
super().__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention(
|
|
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
|
|
|
window_size=window_size, attn_head_dim=attn_head_dim)
|
|
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
|
|
|
|
if init_values:
|
|
|
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
else:
|
|
|
|
self.gamma_1, self.gamma_2 = None, None
|
|
|
|
|
|
|
|
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
|
|
|
|
if self.gamma_1 is None:
|
|
|
|
x = x + self.drop_path(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
else:
|
|
|
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
|
|
|
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, window_size, num_heads):
|
|
|
|
super().__init__()
|
|
|
|
self.window_size = window_size
|
|
|
|
self.window_area = window_size[0] * window_size[1]
|
|
|
|
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
|
|
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
|
|
|
|
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
|
|
|
self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
|
|
|
|
|
|
|
|
def forward(self):
|
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
|
|
self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
|
|
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
|
|
|
|
|
|
|
|
|
|
class Beit(nn.Module):
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
|
|
|
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.,
|
|
|
|
attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
|
|
|
head_init_scale=0.001):
|
|
|
|
super().__init__()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
|
|
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
|
|
if use_shared_rel_pos_bias:
|
|
|
|
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads)
|
|
|
|
else:
|
|
|
|
self.rel_pos_bias = None
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
|
|
self.blocks = nn.ModuleList([
|
|
|
|
Block(
|
|
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
|
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
|
|
init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None)
|
|
|
|
for i in range(depth)])
|
|
|
|
use_fc_norm = self.global_pool == 'avg'
|
|
|
|
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
|
|
|
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else None
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
if self.pos_embed is not None:
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
|
# trunc_normal_(self.mask_token, std=.02)
|
|
|
|
self.fix_init_weight()
|
|
|
|
if isinstance(self.head, nn.Linear):
|
|
|
|
trunc_normal_(self.head.weight, std=.02)
|
|
|
|
self.head.weight.data.mul_(head_init_scale)
|
|
|
|
self.head.bias.data.mul_(head_init_scale)
|
|
|
|
|
|
|
|
def fix_init_weight(self):
|
|
|
|
def rescale(param, layer_id):
|
|
|
|
param.div_(math.sqrt(2.0 * layer_id))
|
|
|
|
|
|
|
|
for layer_id, layer in enumerate(self.blocks):
|
|
|
|
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
|
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.LayerNorm):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def no_weight_decay(self):
|
|
|
|
nwd = {'pos_embed', 'cls_token'}
|
|
|
|
for n, _ in self.named_parameters():
|
|
|
|
if 'relative_position_bias_table' in n:
|
|
|
|
nwd.add(n)
|
|
|
|
return nwd
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
self.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
matcher = dict(
|
|
|
|
stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed
|
|
|
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))],
|
|
|
|
)
|
|
|
|
return matcher
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
if global_pool is not None:
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
|
|
|
if self.pos_embed is not None:
|
|
|
|
x = x + self.pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
|
|
|
for blk in self.blocks:
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
|
|
|
|
else:
|
|
|
|
x = blk(x, shared_rel_pos_bias=rel_pos_bias)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
if self.fc_norm is not None:
|
|
|
|
x = x[:, 1:].mean(dim=1)
|
|
|
|
x = self.fc_norm(x)
|
|
|
|
else:
|
|
|
|
x = x[:, 0]
|
|
|
|
return x if pre_logits else self.head(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _beit_checkpoint_filter_fn(state_dict, model):
|
|
|
|
if 'module' in state_dict:
|
|
|
|
# beit v2 didn't strip module
|
|
|
|
state_dict = state_dict['module']
|
|
|
|
return checkpoint_filter_fn(state_dict, model)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_beit(variant, pretrained=False, **kwargs):
|
|
|
|
if kwargs.get('features_only', None):
|
|
|
|
raise RuntimeError('features_only not implemented for Beit models.')
|
|
|
|
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
Beit, variant, pretrained,
|
|
|
|
# FIXME an updated filter fn needed to interpolate rel pos emb if fine tuning to diff model sizes
|
|
|
|
pretrained_filter_fn=_beit_checkpoint_filter_fn,
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
|
|
|
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
|
|
|
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_base_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
|
|
|
|
model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_large_patch16_384(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_large_patch16_512(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beit_large_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beitv2_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beitv2_base_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beitv2_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beitv2_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def beitv2_large_patch16_224_in22k(pretrained=False, **kwargs):
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
|
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_beit('beitv2_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|