Move DeiT to own file, vit getting crowded. Working towards fixing #1029, make pooling interface for transformers and mlp closer to convnets. Still working through some details...

pull/1014/head
Ross Wightman 3 years ago
parent 95cfc9b3e8
commit 5f81d4de23

@ -205,22 +205,23 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
outputs = model.forward_features(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert outputs.shape[1] == model.num_features
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
model.reset_classifier(0)
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
model = create_model(model_name, pretrained=False, num_classes=0).eval()
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# check classifier name matches default_cfg
if cfg.get('num_classes', None):

@ -8,6 +8,7 @@ from .convmixer import *
from .convnext import *
from .crossvit import *
from .cspnet import *
from .deit import *
from .densenet import *
from .dla import *
from .dpn import *

@ -232,13 +232,15 @@ class Beit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
use_mean_pooling=True, init_scale=0.001):
def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
head_init_scale=0.001):
super().__init__()
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
@ -247,10 +249,7 @@ class Beit(nn.Module):
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
@ -266,8 +265,9 @@ class Beit(nn.Module):
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None)
for i in range(depth)])
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
use_fc_norm = self.global_pool == 'avg'
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else None
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
@ -278,8 +278,8 @@ class Beit(nn.Module):
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=.02)
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def fix_init_weight(self):
def rescale(param, layer_id):
@ -327,14 +327,15 @@ class Beit(nn.Module):
x = blk(x, rel_pos_bias=rel_pos_bias)
x = self.norm(x)
if self.fc_norm is not None:
t = x[:, 1:, :]
return self.fc_norm(t.mean(1))
else:
return x[:, 0]
return x
def forward(self, x):
x = self.forward_features(x)
if self.fc_norm is not None:
x = x[:, 1:].mean(dim=1)
x = self.fc_norm(x)
else:
x = x[:, 0]
x = self.head(x)
return x

@ -213,11 +213,11 @@ class Cait(nn.Module):
act_layer=nn.GELU,
attn_block=TalkingHeadAttn,
mlp_block=Mlp,
init_scale=1e-4,
init_values=1e-4,
attn_block_token_only=ClassAttn,
mlp_block_token_only=Mlp,
depth_token_only=2,
mlp_ratio_clstk=4.0
mlp_ratio_token_only=4.0
):
super().__init__()
@ -234,19 +234,19 @@ class Cait(nn.Module):
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.ModuleList([
self.blocks = nn.Sequential(*[
block_layers(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_scale)
act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_values)
for i in range(depth)])
self.blocks_token_only = nn.ModuleList([
block_layers_token(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_clstk, qkv_bias=qkv_bias,
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_token_only, qkv_bias=qkv_bias,
drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer,
act_layer=act_layer, attn_block=attn_block_token_only,
mlp_block=mlp_block_token_only, init_values=init_scale)
mlp_block=mlp_block_token_only, init_values=init_values)
for i in range(depth_token_only)])
self.norm = norm_layer(embed_dim)
@ -281,25 +281,21 @@ class Cait(nn.Module):
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = self.pos_drop(x)
x = self.blocks(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
for i, blk in enumerate(self.blocks_token_only):
cls_tokens = blk(x, cls_tokens)
x = torch.cat((cls_tokens, x), dim=1)
x = self.norm(x)
return x[:, 0]
return x
def forward(self, x):
x = self.forward_features(x)
x = x[:, 0]
x = self.head(x)
return x
@ -326,69 +322,69 @@ def _create_cait(variant, pretrained=False, **kwargs):
@register_model
def cait_xxs24_224(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs)
model = _create_cait('cait_xxs24_224', pretrained=pretrained, **model_args)
return model
@register_model
def cait_xxs24_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs)
model = _create_cait('cait_xxs24_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_xxs36_224(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs)
model = _create_cait('cait_xxs36_224', pretrained=pretrained, **model_args)
return model
@register_model
def cait_xxs36_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs)
model = _create_cait('cait_xxs36_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_xs24_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5, **kwargs)
model = _create_cait('cait_xs24_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_s24_224(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs)
model = _create_cait('cait_s24_224', pretrained=pretrained, **model_args)
return model
@register_model
def cait_s24_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_scale=1e-5, **kwargs)
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs)
model = _create_cait('cait_s24_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_s36_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_scale=1e-6, **kwargs)
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6, **kwargs)
model = _create_cait('cait_s36_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_m36_384(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_scale=1e-6, **kwargs)
model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6, **kwargs)
model = _create_cait('cait_m36_384', pretrained=pretrained, **model_args)
return model
@register_model
def cait_m48_448(pretrained=False, **kwargs):
model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_scale=1e-6, **kwargs)
model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6, **kwargs)
model = _create_cait('cait_m48_448', pretrained=pretrained, **model_args)
return model

@ -447,6 +447,7 @@ class CoaT(nn.Module):
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
else:
# CoaT-Lite series: Use feature of last scale for classification.
self.aggregate = None
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# Initialize weights.
@ -542,8 +543,7 @@ class CoaT(nn.Module):
else:
# Return features for classification.
x4 = self.norm4(x4)
x4_cls = x4[:, 0]
return x4_cls
return x4
# Parallel blocks.
for blk in self.parallel_blocks:
@ -574,20 +574,20 @@ class CoaT(nn.Module):
x2 = self.norm2(x2)
x3 = self.norm3(x3)
x4 = self.norm4(x4)
x2_cls = x2[:, :1] # [B, 1, C]
x3_cls = x3[:, :1]
x4_cls = x4[:, :1]
merged_cls = torch.cat((x2_cls, x3_cls, x4_cls), dim=1) # [B, 3, C]
merged_cls = self.aggregate(merged_cls).squeeze(dim=1) # Shape: [B, C]
return merged_cls
def forward(self, x):
if self.return_interm_layers:
return [x2, x3, x4]
def forward(self, x) -> torch.Tensor:
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features (for down-stream tasks).
return self.forward_features(x)
else:
# Return features for classification.
x = self.forward_features(x)
x_feat = self.forward_features(x)
if isinstance(x_feat, (tuple, list)):
x = torch.cat([xl[:, :1] for xl in x_feat], dim=1) # [B, 3, C]
x = self.aggregate(x).squeeze(dim=1) # Shape: [B, C]
else:
x = x_feat[:, 0]
x = self.head(x)
return x

@ -308,10 +308,11 @@ class ConViT(nn.Module):
x = blk(x)
x = self.norm(x)
return x[:, 0]
return x
def forward(self, x):
x = self.forward_features(x)
x = x[:, 0]
x = self.head(x)
return x

@ -69,13 +69,12 @@ class ConvMixer(nn.Module):
def forward_features(self, x):
x = self.stem(x)
x = self.blocks(x)
x = self.pooling(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.pooling(x)
x = self.head(x)
return x

@ -319,7 +319,6 @@ def checkpoint_filter_fn(state_dict, model):
def _create_convnext(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
ConvNeXt, variant, pretrained,
default_cfg=default_cfgs[variant],
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs)

@ -368,7 +368,7 @@ class CrossViT(nn.Module):
[nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in
range(self.num_branches)])
def forward_features(self, x):
def forward_features(self, x) -> List[torch.Tensor]:
B = x.shape[0]
xs = []
for i, patch_embed in enumerate(self.patch_embed):
@ -389,11 +389,11 @@ class CrossViT(nn.Module):
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm
xs = [norm(xs[i]) for i, norm in enumerate(self.norm)]
return [xo[:, 0] for xo in xs]
return xs
def forward(self, x):
xs = self.forward_features(x)
ce_logits = [head(xs[i]) for i, head in enumerate(self.head)]
ce_logits = [head(xs[i][:, 0]) for i, head in enumerate(self.head)]
if not isinstance(self.head[0], nn.Identity):
ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0)
return ce_logits

@ -0,0 +1,201 @@
""" DeiT - Data-efficient Image Transformers
DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
Modifications copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import torch
from torch import nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn
from .helpers import build_model_with_cfg
from .registry import register_model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# deit models (FB weights)
'deit_tiny_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
'deit_small_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
'deit_base_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'),
'deit_base_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit_tiny_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
classifier=('head', 'head_dist')),
'deit_small_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
input_size=(3, 384, 384), crop_pct=1.0,
classifier=('head', 'head_dist')),
}
class VisionTransformerDistilled(VisionTransformer):
""" Vision Transformer w/ Distillation Token and Head
Distillation token & head support for `DeiT: Data-efficient Image Transformers`
- https://arxiv.org/abs/2012.12877
"""
def __init__(self, *args, **kwargs):
weight_init = kwargs.pop('weight_init', '')
super().__init__(*args, **kwargs, weight_init='skip')
self.num_tokens = 2
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + self.num_tokens, self.embed_dim))
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
def init_weights(self, mode=''):
trunc_normal_(self.dist_token, std=.02)
super().init_weights(mode=mode)
def get_classifier(self):
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x) -> torch.Tensor:
x = self.patch_embed(x)
x = torch.cat((
self.cls_token.expand(x.shape[0], -1, -1),
self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x_dist = self.head_dist(x[:, 1])
x = self.head(x[:, 0])
if self.training and not torch.jit.is_scripting():
return x, x_dist
else:
# during inference, return the average of both classifier predictions
return (x + x_dist) / 2
def _create_deit(variant, pretrained=False, distilled=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model_cls = VisionTransformerDistilled if distilled else VisionTransformer
model = build_model_with_cfg(
model_cls, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_deit(
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_deit(
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_deit(
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_deit(
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
return model

@ -290,10 +290,10 @@ class Attention(nn.Module):
qkv = self.qkv(x)
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
k = k.permute(0, 2, 3, 1)
v = v.permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device)
attn = q @ k * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
@ -383,11 +383,11 @@ class AttentionSubsample(nn.Module):
else:
B, N, C = x.shape
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.d], dim=3)
k = k.permute(0, 2, 1, 3) # BHNC
k = k.permute(0, 2, 3, 1) # BHCN
v = v.permute(0, 2, 1, 3) # BHNC
q = self.q(x).view(B, self.resolution_2, self.num_heads, self.key_dim).permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device)
attn = q @ k * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.dh)
@ -519,11 +519,11 @@ class Levit(nn.Module):
if not self.use_conv:
x = x.flatten(2).transpose(1, 2)
x = self.blocks(x)
x = x.mean((-2, -1)) if self.use_conv else x.mean(1)
return x
def forward(self, x):
x = self.forward_features(x)
x = x.mean((-2, -1)) if self.use_conv else x.mean(1)
if self.head_dist is not None:
x, x_dist = self.head(x), self.head_dist(x)
if self.training and not torch.jit.is_scripting():

@ -294,11 +294,11 @@ class MlpMixer(nn.Module):
x = self.stem(x)
x = self.blocks(x)
x = self.norm(x)
x = x.mean(dim=1)
return x
def forward(self, x):
x = self.forward_features(x)
x = x.mean(dim=1)
x = self.head(x)
return x

@ -200,9 +200,10 @@ class MobileNetV3Features(nn.Module):
and object detection models.
"""
def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3,
stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels,
se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.):
def __init__(
self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3,
stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels,
se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.):
super(MobileNetV3Features, self).__init__()
act_layer = act_layer or nn.ReLU
norm_layer = norm_layer or nn.BatchNorm2d

@ -125,10 +125,8 @@ class ConvHeadPooling(nn.Module):
self.fc = nn.Linear(in_feature, out_feature)
def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.conv(x)
cls_token = self.fc(cls_token)
return x, cls_token
@ -225,21 +223,18 @@ class PoolingVisionTransformer(nn.Module):
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
x, cls_tokens = self.transformers((x, cls_tokens))
cls_tokens = self.norm(cls_tokens)
if self.head_dist is not None:
return cls_tokens[:, 0], cls_tokens[:, 1]
else:
return cls_tokens[:, 0]
return cls_tokens
def forward(self, x):
x = self.forward_features(x)
if self.head_dist is not None:
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple
x, x_dist = self.head(x[:, 0]), self.head_dist(x[:, 1]) # x must be a tuple
if self.training and not torch.jit.is_scripting():
return x, x_dist
else:
return (x + x_dist) / 2
else:
return self.head(x)
return self.head(x[:, 0])
def checkpoint_filter_fn(state_dict, model):

@ -14,7 +14,7 @@ Modifications and additions for timm hacked together by / Copyright 2021, Ross W
# --------------------------------------------------------
import logging
import math
from copy import deepcopy
from functools import partial
from typing import Optional
import torch
@ -23,9 +23,8 @@ import torch.utils.checkpoint as checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_
from .layers import _assert
from .helpers import build_model_with_cfg, named_apply
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert
from .registry import register_model
from .vision_transformer import checkpoint_filter_fn, _init_vit_weights
@ -444,15 +443,17 @@ class SwinTransformer(nn.Module):
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, weight_init='', **kwargs):
def __init__(
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, global_pool='avg',
embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, weight_init='', **kwargs):
super().__init__()
assert global_pool in ('', 'avg')
self.num_classes = num_classes
self.global_pool = global_pool
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
@ -468,18 +469,11 @@ class SwinTransformer(nn.Module):
self.patch_grid = self.patch_embed.grid_size
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
else:
self.absolute_pos_embed = None
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) if ape else None
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
layers = []
for i_layer in range(self.num_layers):
layers += [BasicLayer(
@ -500,16 +494,16 @@ class SwinTransformer(nn.Module):
self.layers = nn.Sequential(*layers)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
assert weight_init in ('jax', 'jax_nlhb', 'nlhb', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in weight_init else 0.
if weight_init.startswith('jax'):
for n, m in self.named_modules():
_init_vit_weights(m, n, head_bias=head_bias, jax_impl=True)
else:
self.apply(_init_vit_weights)
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'nlhb', '')
if self.absolute_pos_embed is not None:
trunc_normal_(self.absolute_pos_embed, std=.02)
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl='jax' in mode), self)
@torch.jit.ignore
def no_weight_decay(self):
@ -522,8 +516,9 @@ class SwinTransformer(nn.Module):
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
@ -533,12 +528,12 @@ class SwinTransformer(nn.Module):
x = self.pos_drop(x)
x = self.layers(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
if self.global_pool == 'avg':
x = x.mean(dim=1)
x = self.head(x)
return x

@ -226,10 +226,11 @@ class TNT(nn.Module):
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
patch_embed = self.norm(patch_embed)
return patch_embed[:, 0]
return patch_embed
def forward(self, x):
x = self.forward_features(x)
x = x[:, 0]
x = self.head(x)
return x

@ -357,10 +357,11 @@ class Twins(nn.Module):
if i < len(self.depths) - 1:
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x.mean(dim=1) # GAP here
return x
def forward(self, x):
x = self.forward_features(x)
x = x.mean(dim=1)
x = self.head(x)
return x

@ -10,9 +10,6 @@ A PyTorch implement of Vision Transformers as described in:
The official jax code is released and available at https://github.com/google-research/vision_transformer
DeiT model defs and weights from https://github.com/facebookresearch/deit,
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
@ -26,7 +23,6 @@ import math
import logging
from functools import partial
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn
@ -105,6 +101,7 @@ default_cfgs = {
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch14_224': _cfg(url=''),
'vit_huge_patch14_224': _cfg(url=''),
'vit_giant_patch14_224': _cfg(url=''),
'vit_gigantic_patch14_224': _cfg(url=''),
@ -161,32 +158,6 @@ default_cfgs = {
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
# deit models (FB weights)
'deit_tiny_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_small_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_base_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_base_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0),
'deit_tiny_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_small_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0,
classifier=('head', 'head_dist')),
# ViT ImageNet-21K-P pretraining by MILL
'vit_base_patch16_224_miil_in21k': _cfg(
@ -253,15 +224,13 @@ class VisionTransformer(nn.Module):
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers`
- https://arxiv.org/abs/2012.12877
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
act_layer=None, weight_init=''):
def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, global_pool='',
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='',
embed_layer=PatchEmbed, norm_layer=None, act_layer=None):
"""
Args:
img_size (int, tuple): input image size
@ -274,18 +243,19 @@ class VisionTransformer(nn.Module):
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
distilled (bool): model includes a distillation token and head as in DeiT models
weight_init: (str): weight init scheme
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
weight_init: (str): weight init scheme
act_layer: (nn.Module): MLP activation layer
"""
super().__init__()
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 2 if distilled else 1
self.num_tokens = 1
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
@ -294,7 +264,6 @@ class VisionTransformer(nn.Module):
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
@ -304,38 +273,41 @@ class VisionTransformer(nn.Module):
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size and not distilled:
self.num_features = representation_size
use_fc_norm = self.global_pool == 'avg'
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
# Representation layer. Used for original ViT models w/ in21k pretraining.
self.representation_size = representation_size
self.pre_logits = nn.Identity()
if representation_size:
self._reset_representation(representation_size)
# Classifier Head
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
final_chs = self.representation_size if self.representation_size else self.embed_dim
self.head = nn.Linear(final_chs, num_classes) if num_classes > 0 else nn.Identity()
if weight_init != 'skip':
self.init_weights(weight_init)
def _reset_representation(self, representation_size):
self.representation_size = representation_size
if self.representation_size:
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('fc', nn.Linear(self.embed_dim, self.representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head(s)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = None
if distilled:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'nlhb', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
trunc_normal_(self.pos_embed, std=.02)
if self.dist_token is not None:
trunc_normal_(self.dist_token, std=.02)
if mode.startswith('jax'):
# leave cls token as zeros to match jax impl
named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl=True), self)
else:
if 'jax' not in mode:
# init cls token to truncated normal if not following jax impl, jax impl is zero
trunc_normal_(self.cls_token, std=.02)
self.apply(_init_vit_weights)
named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl='jax' in mode), self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
@ -350,43 +322,33 @@ class VisionTransformer(nn.Module):
return {'pos_embed', 'cls_token', 'dist_token'}
def get_classifier(self):
if self.dist_token is None:
return self.head
else:
return self.head, self.head_dist
return self.head
def reset_classifier(self, num_classes, global_pool=''):
def reset_classifier(self, num_classes, global_pool='', representation_size=None):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.num_tokens == 2:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
self.global_pool = global_pool
if representation_size is not None:
self._reset_representation(representation_size)
final_chs = self.representation_size if self.representation_size else self.embed_dim
self.head = nn.Linear(final_chs, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
if self.dist_token is None:
return self.pre_logits(x[:, 0])
else:
return x[:, 0], x[:, 1]
return x
def forward(self, x):
x = self.forward_features(x)
if self.head_dist is not None:
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple
if self.training and not torch.jit.is_scripting():
# during inference, return the average of both classifier predictions
return x, x_dist
else:
return (x + x_dist) / 2
if self.global_pool == 'avg':
x = x[:, self.num_tokens:].mean(dim=1)
else:
x = self.head(x)
x = x[:, 0]
x = self.fc_norm(x)
x = self.pre_logits(x)
x = self.head(x)
return x
@ -708,7 +670,7 @@ def vit_large_patch32_384(pretrained=False, **kwargs):
@register_model
def vit_large_patch16_224(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
@ -726,6 +688,15 @@ def vit_large_patch16_384(pretrained=False, **kwargs):
return model
@register_model
def vit_large_patch14_224(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/14)
"""
model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs)
model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_huge_patch14_224(pretrained=False, **kwargs):
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
@ -914,90 +885,6 @@ def vit_base_patch8_224_dino(pretrained=False, **kwargs):
return model
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_vision_transformer('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_vision_transformer('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer('deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_vision_transformer(
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_vision_transformer(
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer(
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer(
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
return model
@register_model
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).

@ -426,17 +426,17 @@ class XCiT(nn.Module):
for blk in self.blocks:
x = blk(x, Hp, Wp)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
for blk in self.cls_attn_blocks:
x = blk(x)
x = self.norm(x)[:, 0]
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = x[:, 0]
x = self.head(x)
return x

Loading…
Cancel
Save