|
|
|
#!/usr/bin/env python3
|
|
|
|
""" ImageNet Training Script
|
|
|
|
|
|
|
|
This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
|
|
|
|
training results with some of the latest networks and training techniques. It favours canonical PyTorch
|
|
|
|
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
|
|
|
|
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
|
|
|
|
|
|
|
|
This script was started from an early version of the PyTorch ImageNet example
|
|
|
|
(https://github.com/pytorch/examples/tree/master/imagenet)
|
|
|
|
|
|
|
|
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
|
|
|
|
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
from collections import OrderedDict
|
|
|
|
from contextlib import suppress
|
|
|
|
from datetime import datetime
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torchvision.utils
|
|
|
|
import yaml
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as NativeDDP
|
|
|
|
|
|
|
|
from timm import utils
|
|
|
|
from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
|
|
|
|
from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm
|
|
|
|
from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy
|
|
|
|
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters
|
|
|
|
from timm.optim import create_optimizer_v2, optimizer_kwargs
|
|
|
|
from timm.scheduler import create_scheduler_v2, scheduler_kwargs
|
|
|
|
from timm.utils import ApexScaler, NativeScaler
|
|
|
|
|
|
|
|
try:
|
|
|
|
from apex import amp
|
|
|
|
from apex.parallel import DistributedDataParallel as ApexDDP
|
|
|
|
from apex.parallel import convert_syncbn_model
|
|
|
|
has_apex = True
|
|
|
|
except ImportError:
|
|
|
|
has_apex = False
|
|
|
|
|
|
|
|
has_native_amp = False
|
|
|
|
try:
|
|
|
|
if getattr(torch.cuda.amp, 'autocast') is not None:
|
|
|
|
has_native_amp = True
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
try:
|
|
|
|
import wandb
|
|
|
|
has_wandb = True
|
|
|
|
except ImportError:
|
|
|
|
has_wandb = False
|
|
|
|
|
|
|
|
try:
|
|
|
|
from functorch.compile import memory_efficient_fusion
|
|
|
|
has_functorch = True
|
|
|
|
except ImportError as e:
|
|
|
|
has_functorch = False
|
|
|
|
|
|
|
|
has_compile = hasattr(torch, 'compile')
|
|
|
|
|
|
|
|
|
|
|
|
_logger = logging.getLogger('train')
|
|
|
|
|
|
|
|
# The first arg parser parses out only the --config argument, this argument is used to
|
|
|
|
# load a yaml file containing key-values that override the defaults for the main parser below
|
|
|
|
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
|
|
|
|
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
|
|
|
|
help='YAML config file specifying default arguments')
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
|
|
|
|
|
|
|
|
# Dataset parameters
|
|
|
|
group = parser.add_argument_group('Dataset parameters')
|
|
|
|
# Keep this argument outside the dataset group because it is positional.
|
|
|
|
parser.add_argument('data', nargs='?', metavar='DIR', const=None,
|
|
|
|
help='path to dataset (positional is *deprecated*, use --data-dir)')
|
|
|
|
parser.add_argument('--data-dir', metavar='DIR',
|
|
|
|
help='path to dataset (root dir)')
|
|
|
|
parser.add_argument('--dataset', metavar='NAME', default='',
|
|
|
|
help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)')
|
|
|
|
group.add_argument('--train-split', metavar='NAME', default='train',
|
|
|
|
help='dataset train split (default: train)')
|
|
|
|
group.add_argument('--val-split', metavar='NAME', default='validation',
|
|
|
|
help='dataset validation split (default: validation)')
|
|
|
|
group.add_argument('--dataset-download', action='store_true', default=False,
|
|
|
|
help='Allow download of dataset for torch/ and tfds/ datasets that support it.')
|
|
|
|
group.add_argument('--class-map', default='', type=str, metavar='FILENAME',
|
|
|
|
help='path to class to idx mapping file (default: "")')
|
|
|
|
|
|
|
|
# Model parameters
|
|
|
|
group = parser.add_argument_group('Model parameters')
|
|
|
|
group.add_argument('--model', default='resnet50', type=str, metavar='MODEL',
|
|
|
|
help='Name of model to train (default: "resnet50")')
|
|
|
|
group.add_argument('--pretrained', action='store_true', default=False,
|
|
|
|
help='Start with pretrained version of specified network (if avail)')
|
|
|
|
group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
|
|
|
|
help='Initialize model from this checkpoint (default: none)')
|
|
|
|
group.add_argument('--resume', default='', type=str, metavar='PATH',
|
|
|
|
help='Resume full model and optimizer state from checkpoint (default: none)')
|
|
|
|
group.add_argument('--no-resume-opt', action='store_true', default=False,
|
|
|
|
help='prevent resume of optimizer state when resuming model')
|
|
|
|
group.add_argument('--num-classes', type=int, default=None, metavar='N',
|
|
|
|
help='number of label classes (Model default if None)')
|
|
|
|
group.add_argument('--gp', default=None, type=str, metavar='POOL',
|
|
|
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
|
|
|
|
group.add_argument('--img-size', type=int, default=None, metavar='N',
|
|
|
|
help='Image size (default: None => model default)')
|
|
|
|
group.add_argument('--in-chans', type=int, default=None, metavar='N',
|
|
|
|
help='Image input channels (default: None => 3)')
|
|
|
|
group.add_argument('--input-size', default=None, nargs=3, type=int,
|
|
|
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
|
|
|
|
group.add_argument('--crop-pct', default=None, type=float,
|
|
|
|
metavar='N', help='Input image center crop percent (for validation only)')
|
|
|
|
group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
|
|
|
help='Override mean pixel value of dataset')
|
|
|
|
group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
|
|
|
help='Override std deviation of dataset')
|
|
|
|
group.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
|
|
|
help='Image resize interpolation type (overrides model)')
|
|
|
|
group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N',
|
|
|
|
help='Input batch size for training (default: 128)')
|
|
|
|
group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N',
|
|
|
|
help='Validation batch size override (default: None)')
|
|
|
|
group.add_argument('--channels-last', action='store_true', default=False,
|
|
|
|
help='Use channels_last memory layout')
|
|
|
|
group.add_argument('--fuser', default='', type=str,
|
|
|
|
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
|
|
|
|
group.add_argument('--grad-checkpointing', action='store_true', default=False,
|
|
|
|
help='Enable gradient checkpointing through model blocks/stages')
|
|
|
|
group.add_argument('--fast-norm', default=False, action='store_true',
|
|
|
|
help='enable experimental fast-norm')
|
|
|
|
|
|
|
|
scripting_group = group.add_mutually_exclusive_group()
|
|
|
|
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true',
|
|
|
|
help='torch.jit.script the full model')
|
|
|
|
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor',
|
|
|
|
help="Enable compilation w/ specified backend (default: inductor).")
|
|
|
|
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
|
|
|
|
help="Enable AOT Autograd support.")
|
|
|
|
|
|
|
|
# Optimizer parameters
|
|
|
|
group = parser.add_argument_group('Optimizer parameters')
|
|
|
|
group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
|
|
|
help='Optimizer (default: "sgd")')
|
|
|
|
group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
|
|
|
|
help='Optimizer Epsilon (default: None, use opt default)')
|
|
|
|
group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
|
|
|
help='Optimizer Betas (default: None, use opt default)')
|
|
|
|
group.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
|
|
help='Optimizer momentum (default: 0.9)')
|
|
|
|
group.add_argument('--weight-decay', type=float, default=2e-5,
|
|
|
|
help='weight decay (default: 2e-5)')
|
|
|
|
group.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
|
|
|
help='Clip gradient norm (default: None, no clipping)')
|
|
|
|
group.add_argument('--clip-mode', type=str, default='norm',
|
|
|
|
help='Gradient clipping mode. One of ("norm", "value", "agc")')
|
|
|
|
group.add_argument('--layer-decay', type=float, default=None,
|
|
|
|
help='layer-wise learning rate decay (default: None)')
|
|
|
|
|
|
|
|
# Learning rate schedule parameters
|
|
|
|
group = parser.add_argument_group('Learning rate schedule parameters')
|
|
|
|
group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER',
|
|
|
|
help='LR scheduler (default: "step"')
|
|
|
|
group.add_argument('--sched-on-updates', action='store_true', default=False,
|
|
|
|
help='Apply LR scheduler step on update instead of epoch end.')
|
|
|
|
group.add_argument('--lr', type=float, default=None, metavar='LR',
|
|
|
|
help='learning rate, overrides lr-base if set (default: None)')
|
|
|
|
group.add_argument('--lr-base', type=float, default=0.1, metavar='LR',
|
|
|
|
help='base learning rate: lr = lr_base * global_batch_size / base_size')
|
|
|
|
group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV',
|
|
|
|
help='base learning rate batch size (divisor, default: 256).')
|
|
|
|
group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE',
|
|
|
|
help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)')
|
|
|
|
group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
|
|
|
help='learning rate noise on/off epoch percentages')
|
|
|
|
group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
|
|
|
help='learning rate noise limit percent (default: 0.67)')
|
|
|
|
group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
|
|
|
|
help='learning rate noise std-dev (default: 1.0)')
|
|
|
|
group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
|
|
|
|
help='learning rate cycle len multiplier (default: 1.0)')
|
|
|
|
group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
|
|
|
|
help='amount to decay each learning rate cycle (default: 0.5)')
|
|
|
|
group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
|
|
|
|
help='learning rate cycle limit, cycles enabled if > 1')
|
|
|
|
group.add_argument('--lr-k-decay', type=float, default=1.0,
|
|
|
|
help='learning rate k-decay for cosine/poly (default: 1.0)')
|
|
|
|
group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR',
|
|
|
|
help='warmup learning rate (default: 1e-5)')
|
|
|
|
group.add_argument('--min-lr', type=float, default=0, metavar='LR',
|
|
|
|
help='lower lr bound for cyclic schedulers that hit 0 (default: 0)')
|
|
|
|
group.add_argument('--epochs', type=int, default=300, metavar='N',
|
|
|
|
help='number of epochs to train (default: 300)')
|
|
|
|
group.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
|
|
|
|
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
|
|
|
|
group.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
|
|
|
help='manual epoch number (useful on restarts)')
|
|
|
|
group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES",
|
|
|
|
help='list of decay epoch indices for multistep lr. must be increasing')
|
|
|
|
group.add_argument('--decay-epochs', type=float, default=90, metavar='N',
|
|
|
|
help='epoch interval to decay LR')
|
|
|
|
group.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
|
|
|
|
help='epochs to warmup LR, if scheduler supports')
|
|
|
|
group.add_argument('--warmup-prefix', action='store_true', default=False,
|
|
|
|
help='Exclude warmup period from decay schedule.'),
|
|
|
|
group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N',
|
|
|
|
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
|
|
|
group.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
|
|
|
help='patience epochs for Plateau LR scheduler (default: 10)')
|
|
|
|
group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
|
|
help='LR decay rate (default: 0.1)')
|
|
|
|
|
|
|
|
# Augmentation & regularization parameters
|
|
|
|
group = parser.add_argument_group('Augmentation and regularization parameters')
|
|
|
|
group.add_argument('--no-aug', action='store_true', default=False,
|
|
|
|
help='Disable all training augmentation, override other train aug args')
|
|
|
|
group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
|
|
|
|
help='Random resize scale (default: 0.08 1.0)')
|
|
|
|
group.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
|
|
|
|
help='Random resize aspect ratio (default: 0.75 1.33)')
|
|
|
|
group.add_argument('--hflip', type=float, default=0.5,
|
|
|
|
help='Horizontal flip training aug probability')
|
|
|
|
group.add_argument('--vflip', type=float, default=0.,
|
|
|
|
help='Vertical flip training aug probability')
|
|
|
|
group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
|
|
|
|
help='Color jitter factor (default: 0.4)')
|
|
|
|
group.add_argument('--aa', type=str, default=None, metavar='NAME',
|
|
|
|
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
|
|
|
|
group.add_argument('--aug-repeats', type=float, default=0,
|
|
|
|
help='Number of augmentation repetitions (distributed training only) (default: 0)')
|
|
|
|
group.add_argument('--aug-splits', type=int, default=0,
|
|
|
|
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
|
|
|
|
group.add_argument('--jsd-loss', action='store_true', default=False,
|
|
|
|
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
|
|
|
|
group.add_argument('--bce-loss', action='store_true', default=False,
|
|
|
|
help='Enable BCE loss w/ Mixup/CutMix use.')
|
|
|
|
group.add_argument('--bce-target-thresh', type=float, default=None,
|
|
|
|
help='Threshold for binarizing softened BCE targets (default: None, disabled)')
|
|
|
|
group.add_argument('--reprob', type=float, default=0., metavar='PCT',
|
|
|
|
help='Random erase prob (default: 0.)')
|
|
|
|
group.add_argument('--remode', type=str, default='pixel',
|
|
|
|
help='Random erase mode (default: "pixel")')
|
|
|
|
group.add_argument('--recount', type=int, default=1,
|
|
|
|
help='Random erase count (default: 1)')
|
|
|
|
group.add_argument('--resplit', action='store_true', default=False,
|
|
|
|
help='Do not random erase first (clean) augmentation split')
|
|
|
|
group.add_argument('--mixup', type=float, default=0.0,
|
|
|
|
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
|
|
|
|
group.add_argument('--cutmix', type=float, default=0.0,
|
|
|
|
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
|
|
|
|
group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
|
|
|
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
|
|
|
group.add_argument('--mixup-prob', type=float, default=1.0,
|
|
|
|
help='Probability of performing mixup or cutmix when either/both is enabled')
|
|
|
|
group.add_argument('--mixup-switch-prob', type=float, default=0.5,
|
|
|
|
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
|
|
|
group.add_argument('--mixup-mode', type=str, default='batch',
|
|
|
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
|
|
|
group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
|
|
|
|
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
|
|
|
|
group.add_argument('--smoothing', type=float, default=0.1,
|
|
|
|
help='Label smoothing (default: 0.1)')
|
|
|
|
group.add_argument('--train-interpolation', type=str, default='random',
|
|
|
|
help='Training interpolation (random, bilinear, bicubic default: "random")')
|
|
|
|
group.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
|
|
|
help='Dropout rate (default: 0.)')
|
|
|
|
group.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
|
|
|
|
group.add_argument('--drop-path', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop path rate (default: None)')
|
|
|
|
group.add_argument('--drop-block', type=float, default=None, metavar='PCT',
|
|
|
|
help='Drop block rate (default: None)')
|
|
|
|
|
|
|
|
# Batch norm parameters (only works with gen_efficientnet based models currently)
|
|
|
|
group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.')
|
|
|
|
group.add_argument('--bn-momentum', type=float, default=None,
|
|
|
|
help='BatchNorm momentum override (if not None)')
|
|
|
|
group.add_argument('--bn-eps', type=float, default=None,
|
|
|
|
help='BatchNorm epsilon override (if not None)')
|
|
|
|
group.add_argument('--sync-bn', action='store_true',
|
|
|
|
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
|
|
|
|
group.add_argument('--dist-bn', type=str, default='reduce',
|
|
|
|
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
|
|
|
|
group.add_argument('--split-bn', action='store_true',
|
|
|
|
help='Enable separate BN layers per augmentation split.')
|
|
|
|
|
|
|
|
# Model Exponential Moving Average
|
|
|
|
group = parser.add_argument_group('Model exponential moving average parameters')
|
|
|
|
group.add_argument('--model-ema', action='store_true', default=False,
|
|
|
|
help='Enable tracking moving average of model weights')
|
|
|
|
group.add_argument('--model-ema-force-cpu', action='store_true', default=False,
|
|
|
|
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
|
|
|
|
group.add_argument('--model-ema-decay', type=float, default=0.9998,
|
|
|
|
help='decay factor for model weights moving average (default: 0.9998)')
|
|
|
|
|
|
|
|
# Misc
|
|
|
|
group = parser.add_argument_group('Miscellaneous parameters')
|
|
|
|
group.add_argument('--seed', type=int, default=42, metavar='S',
|
|
|
|
help='random seed (default: 42)')
|
|
|
|
group.add_argument('--worker-seeding', type=str, default='all',
|
|
|
|
help='worker seed mode (default: all)')
|
|
|
|
group.add_argument('--log-interval', type=int, default=50, metavar='N',
|
|
|
|
help='how many batches to wait before logging training status')
|
|
|
|
group.add_argument('--recovery-interval', type=int, default=0, metavar='N',
|
|
|
|
help='how many batches to wait before writing recovery checkpoint')
|
|
|
|
group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
|
|
|
|
help='number of checkpoints to keep (default: 10)')
|
|
|
|
group.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
|
|
|
help='how many training processes to use (default: 4)')
|
|
|
|
group.add_argument('--save-images', action='store_true', default=False,
|
|
|
|
help='save images of input bathes every log interval for debugging')
|
|
|
|
group.add_argument('--amp', action='store_true', default=False,
|
|
|
|
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
|
|
|
|
group.add_argument('--amp-dtype', default='float16', type=str,
|
|
|
|
help='lower precision AMP dtype (default: float16)')
|
|
|
|
group.add_argument('--amp-impl', default='native', type=str,
|
|
|
|
help='AMP impl to use, "native" or "apex" (default: native)')
|
|
|
|
group.add_argument('--no-ddp-bb', action='store_true', default=False,
|
|
|
|
help='Force broadcast buffers for native DDP to off.')
|
|
|
|
group.add_argument('--pin-mem', action='store_true', default=False,
|
|
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
|
|
|
group.add_argument('--no-prefetcher', action='store_true', default=False,
|
|
|
|
help='disable fast prefetcher')
|
|
|
|
group.add_argument('--output', default='', type=str, metavar='PATH',
|
|
|
|
help='path to output folder (default: none, current dir)')
|
|
|
|
group.add_argument('--experiment', default='', type=str, metavar='NAME',
|
|
|
|
help='name of train experiment, name of sub-folder for output')
|
|
|
|
group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
|
|
|
|
help='Best metric (default: "top1"')
|
|
|
|
group.add_argument('--tta', type=int, default=0, metavar='N',
|
|
|
|
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
|
|
|
|
group.add_argument("--local_rank", default=0, type=int)
|
|
|
|
group.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
|
|
|
|
help='use the multi-epochs-loader to save time at the beginning of every epoch')
|
|
|
|
group.add_argument('--log-wandb', action='store_true', default=False,
|
|
|
|
help='log training and validation metrics to wandb')
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_args():
|
|
|
|
# Do we have a config file to parse?
|
|
|
|
args_config, remaining = config_parser.parse_known_args()
|
|
|
|
if args_config.config:
|
|
|
|
with open(args_config.config, 'r') as f:
|
|
|
|
cfg = yaml.safe_load(f)
|
|
|
|
parser.set_defaults(**cfg)
|
|
|
|
|
|
|
|
# The main arg parser parses the rest of the args, the usual
|
|
|
|
# defaults will have been overridden if config file specified.
|
|
|
|
args = parser.parse_args(remaining)
|
|
|
|
|
|
|
|
# Cache the args as a text string to save them in the output dir later
|
|
|
|
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
|
|
|
|
return args, args_text
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
utils.setup_default_logging()
|
|
|
|
args, args_text = _parse_args()
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
if args.data and not args.data_dir:
|
|
|
|
args.data_dir = args.data
|
|
|
|
args.prefetcher = not args.no_prefetcher
|
|
|
|
device = utils.init_distributed_device(args)
|
|
|
|
if args.distributed:
|
|
|
|
_logger.info(
|
|
|
|
'Training in distributed mode with multiple processes, 1 device per process.'
|
|
|
|
f'Process {args.rank}, total {args.world_size}, device {args.device}.')
|
|
|
|
else:
|
|
|
|
_logger.info(f'Training with a single process on 1 device ({args.device}).')
|
|
|
|
assert args.rank >= 0
|
|
|
|
|
|
|
|
if utils.is_primary(args) and args.log_wandb:
|
|
|
|
if has_wandb:
|
|
|
|
wandb.init(project=args.experiment, config=args)
|
|
|
|
else:
|
|
|
|
_logger.warning(
|
|
|
|
"You've requested to log metrics to wandb but package not found. "
|
|
|
|
"Metrics not being logged to wandb, try `pip install wandb`")
|
|
|
|
|
|
|
|
# resolve AMP arguments based on PyTorch / Apex availability
|
|
|
|
use_amp = None
|
|
|
|
amp_dtype = torch.float16
|
|
|
|
if args.amp:
|
|
|
|
if args.amp_impl == 'apex':
|
|
|
|
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
|
|
|
|
use_amp = 'apex'
|
|
|
|
assert args.amp_dtype == 'float16'
|
|
|
|
else:
|
|
|
|
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
|
|
|
|
use_amp = 'native'
|
|
|
|
assert args.amp_dtype in ('float16', 'bfloat16')
|
|
|
|
if args.amp_dtype == 'bfloat16':
|
|
|
|
amp_dtype = torch.bfloat16
|
|
|
|
|
|
|
|
utils.random_seed(args.seed, args.rank)
|
|
|
|
|
|
|
|
if args.fuser:
|
|
|
|
utils.set_jit_fuser(args.fuser)
|
|
|
|
if args.fast_norm:
|
|
|
|
set_fast_norm()
|
|
|
|
|
|
|
|
in_chans = 3
|
|
|
|
if args.in_chans is not None:
|
|
|
|
in_chans = args.in_chans
|
|
|
|
elif args.input_size is not None:
|
|
|
|
in_chans = args.input_size[0]
|
|
|
|
|
|
|
|
model = create_model(
|
|
|
|
args.model,
|
|
|
|
pretrained=args.pretrained,
|
|
|
|
in_chans=in_chans,
|
|
|
|
num_classes=args.num_classes,
|
|
|
|
drop_rate=args.drop,
|
|
|
|
drop_path_rate=args.drop_path,
|
|
|
|
drop_block_rate=args.drop_block,
|
|
|
|
global_pool=args.gp,
|
|
|
|
bn_momentum=args.bn_momentum,
|
|
|
|
bn_eps=args.bn_eps,
|
|
|
|
scriptable=args.torchscript,
|
|
|
|
checkpoint_path=args.initial_checkpoint,
|
|
|
|
)
|
|
|
|
if args.num_classes is None:
|
|
|
|
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
|
|
|
|
args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
|
|
|
|
|
|
|
|
if args.grad_checkpointing:
|
|
|
|
model.set_grad_checkpointing(enable=True)
|
|
|
|
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info(
|
|
|
|
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
|
|
|
|
|
|
|
|
data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args))
|
|
|
|
|
|
|
|
# setup augmentation batch splits for contrastive loss or split bn
|
|
|
|
num_aug_splits = 0
|
|
|
|
if args.aug_splits > 0:
|
|
|
|
assert args.aug_splits > 1, 'A split of 1 makes no sense'
|
|
|
|
num_aug_splits = args.aug_splits
|
|
|
|
|
|
|
|
# enable split bn (separate bn stats per batch-portion)
|
|
|
|
if args.split_bn:
|
|
|
|
assert num_aug_splits > 1 or args.resplit
|
|
|
|
model = convert_splitbn_model(model, max(num_aug_splits, 2))
|
|
|
|
|
|
|
|
# move model to GPU, enable channels last layout if set
|
|
|
|
model.to(device=device)
|
|
|
|
if args.channels_last:
|
|
|
|
model.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
# setup synchronized BatchNorm for distributed training
|
|
|
|
if args.distributed and args.sync_bn:
|
|
|
|
args.dist_bn = '' # disable dist_bn when sync BN active
|
|
|
|
assert not args.split_bn
|
|
|
|
if has_apex and use_amp == 'apex':
|
|
|
|
# Apex SyncBN used with Apex AMP
|
|
|
|
# WARNING this won't currently work with models using BatchNormAct2d
|
|
|
|
model = convert_syncbn_model(model)
|
|
|
|
else:
|
|
|
|
model = convert_sync_batchnorm(model)
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info(
|
|
|
|
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
|
|
|
|
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
|
|
|
|
|
|
|
|
if args.torchscript:
|
|
|
|
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
|
|
|
|
assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
|
|
|
|
model = torch.jit.script(model)
|
|
|
|
elif args.torchcompile:
|
|
|
|
# FIXME dynamo might need move below DDP wrapping? TBD
|
|
|
|
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.'
|
|
|
|
torch._dynamo.reset()
|
|
|
|
model = torch.compile(model, backend=args.torchcompile)
|
|
|
|
elif args.aot_autograd:
|
|
|
|
assert has_functorch, "functorch is needed for --aot-autograd"
|
|
|
|
model = memory_efficient_fusion(model)
|
|
|
|
|
|
|
|
if not args.lr:
|
|
|
|
global_batch_size = args.batch_size * args.world_size
|
|
|
|
batch_ratio = global_batch_size / args.lr_base_size
|
|
|
|
if not args.lr_base_scale:
|
|
|
|
on = args.opt.lower()
|
|
|
|
args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
|
|
|
|
if args.lr_base_scale == 'sqrt':
|
|
|
|
batch_ratio = batch_ratio ** 0.5
|
|
|
|
args.lr = args.lr_base * batch_ratio
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info(
|
|
|
|
f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) '
|
|
|
|
f'and global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.')
|
|
|
|
|
|
|
|
optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))
|
|
|
|
|
|
|
|
# setup automatic mixed-precision (AMP) loss scaling and op casting
|
|
|
|
amp_autocast = suppress # do nothing
|
|
|
|
loss_scaler = None
|
|
|
|
if use_amp == 'apex':
|
|
|
|
assert device.type == 'cuda'
|
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
|
|
|
|
loss_scaler = ApexScaler()
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
|
|
|
|
elif use_amp == 'native':
|
|
|
|
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
|
|
|
if device.type == 'cuda':
|
|
|
|
loss_scaler = NativeScaler()
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info('Using native Torch AMP. Training in mixed precision.')
|
|
|
|
else:
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info('AMP not enabled. Training in float32.')
|
|
|
|
|
|
|
|
# optionally resume from a checkpoint
|
|
|
|
resume_epoch = None
|
|
|
|
if args.resume:
|
|
|
|
resume_epoch = resume_checkpoint(
|
|
|
|
model,
|
|
|
|
args.resume,
|
|
|
|
optimizer=None if args.no_resume_opt else optimizer,
|
|
|
|
loss_scaler=None if args.no_resume_opt else loss_scaler,
|
|
|
|
log_info=utils.is_primary(args),
|
|
|
|
)
|
|
|
|
|
|
|
|
# setup exponential moving average of model weights, SWA could be used here too
|
|
|
|
model_ema = None
|
|
|
|
if args.model_ema:
|
|
|
|
# Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper
|
|
|
|
model_ema = utils.ModelEmaV2(
|
|
|
|
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
|
|
|
|
if args.resume:
|
|
|
|
load_checkpoint(model_ema.module, args.resume, use_ema=True)
|
|
|
|
|
|
|
|
# setup distributed training
|
|
|
|
if args.distributed:
|
|
|
|
if has_apex and use_amp == 'apex':
|
|
|
|
# Apex DDP preferred unless native amp is activated
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
|
|
|
|
model = ApexDDP(model, delay_allreduce=True)
|
|
|
|
else:
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info("Using native Torch DistributedDataParallel.")
|
|
|
|
model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb)
|
|
|
|
# NOTE: EMA model does not need to be wrapped by DDP
|
|
|
|
|
|
|
|
# create the train and eval datasets
|
|
|
|
dataset_train = create_dataset(
|
|
|
|
args.dataset,
|
|
|
|
root=args.data_dir,
|
|
|
|
split=args.train_split,
|
|
|
|
is_training=True,
|
|
|
|
class_map=args.class_map,
|
|
|
|
download=args.dataset_download,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
seed=args.seed,
|
|
|
|
repeats=args.epoch_repeats,
|
|
|
|
)
|
|
|
|
|
|
|
|
dataset_eval = create_dataset(
|
|
|
|
args.dataset,
|
|
|
|
root=args.data_dir,
|
|
|
|
split=args.val_split,
|
|
|
|
is_training=False,
|
|
|
|
class_map=args.class_map,
|
|
|
|
download=args.dataset_download,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
)
|
|
|
|
|
|
|
|
# setup mixup / cutmix
|
|
|
|
collate_fn = None
|
|
|
|
mixup_fn = None
|
|
|
|
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
|
|
|
|
if mixup_active:
|
|
|
|
mixup_args = dict(
|
|
|
|
mixup_alpha=args.mixup,
|
|
|
|
cutmix_alpha=args.cutmix,
|
|
|
|
cutmix_minmax=args.cutmix_minmax,
|
|
|
|
prob=args.mixup_prob,
|
|
|
|
switch_prob=args.mixup_switch_prob,
|
|
|
|
mode=args.mixup_mode,
|
|
|
|
label_smoothing=args.smoothing,
|
|
|
|
num_classes=args.num_classes
|
|
|
|
)
|
|
|
|
if args.prefetcher:
|
|
|
|
assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
|
|
|
|
collate_fn = FastCollateMixup(**mixup_args)
|
|
|
|
else:
|
|
|
|
mixup_fn = Mixup(**mixup_args)
|
|
|
|
|
|
|
|
# wrap dataset in AugMix helper
|
|
|
|
if num_aug_splits > 1:
|
|
|
|
dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
|
|
|
|
|
|
|
|
# create data loaders w/ augmentation pipeiine
|
|
|
|
train_interpolation = args.train_interpolation
|
|
|
|
if args.no_aug or not train_interpolation:
|
|
|
|
train_interpolation = data_config['interpolation']
|
|
|
|
loader_train = create_loader(
|
|
|
|
dataset_train,
|
|
|
|
input_size=data_config['input_size'],
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
is_training=True,
|
|
|
|
use_prefetcher=args.prefetcher,
|
|
|
|
no_aug=args.no_aug,
|
|
|
|
re_prob=args.reprob,
|
|
|
|
re_mode=args.remode,
|
|
|
|
re_count=args.recount,
|
|
|
|
re_split=args.resplit,
|
|
|
|
scale=args.scale,
|
|
|
|
ratio=args.ratio,
|
|
|
|
hflip=args.hflip,
|
|
|
|
vflip=args.vflip,
|
|
|
|
color_jitter=args.color_jitter,
|
|
|
|
auto_augment=args.aa,
|
|
|
|
num_aug_repeats=args.aug_repeats,
|
|
|
|
num_aug_splits=num_aug_splits,
|
|
|
|
interpolation=train_interpolation,
|
|
|
|
mean=data_config['mean'],
|
|
|
|
std=data_config['std'],
|
|
|
|
num_workers=args.workers,
|
|
|
|
distributed=args.distributed,
|
|
|
|
collate_fn=collate_fn,
|
|
|
|
pin_memory=args.pin_mem,
|
|
|
|
device=device,
|
|
|
|
use_multi_epochs_loader=args.use_multi_epochs_loader,
|
|
|
|
worker_seeding=args.worker_seeding,
|
|
|
|
)
|
|
|
|
|
|
|
|
eval_workers = args.workers
|
|
|
|
if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset):
|
|
|
|
# FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training
|
|
|
|
eval_workers = min(2, args.workers)
|
|
|
|
loader_eval = create_loader(
|
|
|
|
dataset_eval,
|
|
|
|
input_size=data_config['input_size'],
|
|
|
|
batch_size=args.validation_batch_size or args.batch_size,
|
|
|
|
is_training=False,
|
|
|
|
use_prefetcher=args.prefetcher,
|
|
|
|
interpolation=data_config['interpolation'],
|
|
|
|
mean=data_config['mean'],
|
|
|
|
std=data_config['std'],
|
|
|
|
num_workers=eval_workers,
|
|
|
|
distributed=args.distributed,
|
|
|
|
crop_pct=data_config['crop_pct'],
|
|
|
|
pin_memory=args.pin_mem,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
# setup loss function
|
|
|
|
if args.jsd_loss:
|
|
|
|
assert num_aug_splits > 1 # JSD only valid with aug splits set
|
|
|
|
train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing)
|
|
|
|
elif mixup_active:
|
|
|
|
# smoothing is handled with mixup target transform which outputs sparse, soft targets
|
|
|
|
if args.bce_loss:
|
|
|
|
train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh)
|
|
|
|
else:
|
|
|
|
train_loss_fn = SoftTargetCrossEntropy()
|
|
|
|
elif args.smoothing:
|
|
|
|
if args.bce_loss:
|
|
|
|
train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh)
|
|
|
|
else:
|
|
|
|
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
|
|
|
|
else:
|
|
|
|
train_loss_fn = nn.CrossEntropyLoss()
|
|
|
|
train_loss_fn = train_loss_fn.to(device=device)
|
|
|
|
validate_loss_fn = nn.CrossEntropyLoss().to(device=device)
|
|
|
|
|
|
|
|
# setup checkpoint saver and eval metric tracking
|
|
|
|
eval_metric = args.eval_metric
|
|
|
|
best_metric = None
|
|
|
|
best_epoch = None
|
|
|
|
saver = None
|
|
|
|
output_dir = None
|
|
|
|
if utils.is_primary(args):
|
|
|
|
if args.experiment:
|
|
|
|
exp_name = args.experiment
|
|
|
|
else:
|
|
|
|
exp_name = '-'.join([
|
|
|
|
datetime.now().strftime("%Y%m%d-%H%M%S"),
|
|
|
|
safe_model_name(args.model),
|
|
|
|
str(data_config['input_size'][-1])
|
|
|
|
])
|
|
|
|
output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name)
|
|
|
|
decreasing = True if eval_metric == 'loss' else False
|
|
|
|
saver = utils.CheckpointSaver(
|
|
|
|
model=model,
|
|
|
|
optimizer=optimizer,
|
|
|
|
args=args,
|
|
|
|
model_ema=model_ema,
|
|
|
|
amp_scaler=loss_scaler,
|
|
|
|
checkpoint_dir=output_dir,
|
|
|
|
recovery_dir=output_dir,
|
|
|
|
decreasing=decreasing,
|
|
|
|
max_history=args.checkpoint_hist
|
|
|
|
)
|
|
|
|
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
|
|
|
|
f.write(args_text)
|
|
|
|
|
|
|
|
# setup learning rate schedule and starting epoch
|
|
|
|
updates_per_epoch = len(loader_train)
|
|
|
|
lr_scheduler, num_epochs = create_scheduler_v2(
|
|
|
|
optimizer,
|
|
|
|
**scheduler_kwargs(args),
|
|
|
|
updates_per_epoch=updates_per_epoch,
|
|
|
|
)
|
|
|
|
start_epoch = 0
|
|
|
|
if args.start_epoch is not None:
|
|
|
|
# a specified start_epoch will always override the resume epoch
|
|
|
|
start_epoch = args.start_epoch
|
|
|
|
elif resume_epoch is not None:
|
|
|
|
start_epoch = resume_epoch
|
|
|
|
if lr_scheduler is not None and start_epoch > 0:
|
|
|
|
if args.sched_on_updates:
|
|
|
|
lr_scheduler.step_update(start_epoch * updates_per_epoch)
|
|
|
|
else:
|
|
|
|
lr_scheduler.step(start_epoch)
|
|
|
|
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info(
|
|
|
|
f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.')
|
|
|
|
|
|
|
|
try:
|
|
|
|
for epoch in range(start_epoch, num_epochs):
|
|
|
|
if hasattr(dataset_train, 'set_epoch'):
|
|
|
|
dataset_train.set_epoch(epoch)
|
|
|
|
elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
|
|
|
|
loader_train.sampler.set_epoch(epoch)
|
|
|
|
|
|
|
|
train_metrics = train_one_epoch(
|
|
|
|
epoch,
|
|
|
|
model,
|
|
|
|
loader_train,
|
|
|
|
optimizer,
|
|
|
|
train_loss_fn,
|
|
|
|
args,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
saver=saver,
|
|
|
|
output_dir=output_dir,
|
|
|
|
amp_autocast=amp_autocast,
|
|
|
|
loss_scaler=loss_scaler,
|
|
|
|
model_ema=model_ema,
|
|
|
|
mixup_fn=mixup_fn,
|
|
|
|
)
|
|
|
|
|
|
|
|
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info("Distributing BatchNorm running means and vars")
|
|
|
|
utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
|
|
|
|
|
|
|
|
eval_metrics = validate(
|
|
|
|
model,
|
|
|
|
loader_eval,
|
|
|
|
validate_loss_fn,
|
|
|
|
args,
|
|
|
|
amp_autocast=amp_autocast,
|
|
|
|
)
|
|
|
|
|
|
|
|
if model_ema is not None and not args.model_ema_force_cpu:
|
|
|
|
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
|
|
utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
|
|
|
|
|
|
|
|
ema_eval_metrics = validate(
|
|
|
|
model_ema.module,
|
|
|
|
loader_eval,
|
|
|
|
validate_loss_fn,
|
|
|
|
args,
|
|
|
|
amp_autocast=amp_autocast,
|
|
|
|
log_suffix=' (EMA)',
|
|
|
|
)
|
|
|
|
eval_metrics = ema_eval_metrics
|
|
|
|
|
|
|
|
if output_dir is not None:
|
|
|
|
lrs = [param_group['lr'] for param_group in optimizer.param_groups]
|
|
|
|
utils.update_summary(
|
|
|
|
epoch,
|
|
|
|
train_metrics,
|
|
|
|
eval_metrics,
|
|
|
|
filename=os.path.join(output_dir, 'summary.csv'),
|
|
|
|
lr=sum(lrs) / len(lrs),
|
|
|
|
write_header=best_metric is None,
|
|
|
|
log_wandb=args.log_wandb and has_wandb,
|
|
|
|
)
|
|
|
|
|
|
|
|
if saver is not None:
|
|
|
|
# save proper checkpoint with eval metric
|
|
|
|
save_metric = eval_metrics[eval_metric]
|
|
|
|
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
|
|
|
|
|
|
|
|
if lr_scheduler is not None:
|
|
|
|
# step LR for next epoch
|
|
|
|
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
|
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
pass
|
|
|
|
|
|
|
|
if best_metric is not None:
|
|
|
|
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
|
|
|
|
|
|
|
|
|
|
|
|
def train_one_epoch(
|
|
|
|
epoch,
|
|
|
|
model,
|
|
|
|
loader,
|
|
|
|
optimizer,
|
|
|
|
loss_fn,
|
|
|
|
args,
|
|
|
|
device=torch.device('cuda'),
|
|
|
|
lr_scheduler=None,
|
|
|
|
saver=None,
|
|
|
|
output_dir=None,
|
|
|
|
amp_autocast=suppress,
|
|
|
|
loss_scaler=None,
|
|
|
|
model_ema=None,
|
|
|
|
mixup_fn=None
|
|
|
|
):
|
|
|
|
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
|
|
|
|
if args.prefetcher and loader.mixup_enabled:
|
|
|
|
loader.mixup_enabled = False
|
|
|
|
elif mixup_fn is not None:
|
|
|
|
mixup_fn.mixup_enabled = False
|
|
|
|
|
|
|
|
second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
|
|
|
|
batch_time_m = utils.AverageMeter()
|
|
|
|
data_time_m = utils.AverageMeter()
|
|
|
|
losses_m = utils.AverageMeter()
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
num_batches_per_epoch = len(loader)
|
|
|
|
last_idx = num_batches_per_epoch - 1
|
|
|
|
num_updates = epoch * num_batches_per_epoch
|
|
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
|
|
last_batch = batch_idx == last_idx
|
|
|
|
data_time_m.update(time.time() - end)
|
|
|
|
if not args.prefetcher:
|
|
|
|
input, target = input.to(device), target.to(device)
|
|
|
|
if mixup_fn is not None:
|
|
|
|
input, target = mixup_fn(input, target)
|
|
|
|
if args.channels_last:
|
|
|
|
input = input.contiguous(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
with amp_autocast():
|
|
|
|
output = model(input)
|
|
|
|
loss = loss_fn(output, target)
|
|
|
|
|
|
|
|
if not args.distributed:
|
|
|
|
losses_m.update(loss.item(), input.size(0))
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
if loss_scaler is not None:
|
|
|
|
loss_scaler(
|
|
|
|
loss, optimizer,
|
|
|
|
clip_grad=args.clip_grad,
|
|
|
|
clip_mode=args.clip_mode,
|
|
|
|
parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
|
|
|
|
create_graph=second_order
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
loss.backward(create_graph=second_order)
|
|
|
|
if args.clip_grad is not None:
|
|
|
|
utils.dispatch_clip_grad(
|
|
|
|
model_parameters(model, exclude_head='agc' in args.clip_mode),
|
|
|
|
value=args.clip_grad,
|
|
|
|
mode=args.clip_mode
|
|
|
|
)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
if model_ema is not None:
|
|
|
|
model_ema.update(model)
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
num_updates += 1
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
|
|
if last_batch or batch_idx % args.log_interval == 0:
|
|
|
|
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
|
|
|
|
lr = sum(lrl) / len(lrl)
|
|
|
|
|
|
|
|
if args.distributed:
|
|
|
|
reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
|
|
|
|
losses_m.update(reduced_loss.item(), input.size(0))
|
|
|
|
|
|
|
|
if utils.is_primary(args):
|
|
|
|
_logger.info(
|
|
|
|
'Train: {} [{:>4d}/{} ({:>3.0f}%)] '
|
|
|
|
'Loss: {loss.val:#.4g} ({loss.avg:#.3g}) '
|
|
|
|
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
|
|
|
|
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
|
|
|
|
'LR: {lr:.3e} '
|
|
|
|
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
|
|
|
|
epoch,
|
|
|
|
batch_idx, len(loader),
|
|
|
|
100. * batch_idx / last_idx,
|
|
|
|
loss=losses_m,
|
|
|
|
batch_time=batch_time_m,
|
|
|
|
rate=input.size(0) * args.world_size / batch_time_m.val,
|
|
|
|
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
|
|
|
|
lr=lr,
|
|
|
|
data_time=data_time_m)
|
|
|
|
)
|
|
|
|
|
|
|
|
if args.save_images and output_dir:
|
|
|
|
torchvision.utils.save_image(
|
|
|
|
input,
|
|
|
|
os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
|
|
|
|
padding=0,
|
|
|
|
normalize=True
|
|
|
|
)
|
|
|
|
|
|
|
|
if saver is not None and args.recovery_interval and (
|
|
|
|
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
|
|
|
|
saver.save_recovery(epoch, batch_idx=batch_idx)
|
|
|
|
|
|
|
|
if lr_scheduler is not None:
|
|
|
|
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
# end for
|
|
|
|
|
|
|
|
if hasattr(optimizer, 'sync_lookahead'):
|
|
|
|
optimizer.sync_lookahead()
|
|
|
|
|
|
|
|
return OrderedDict([('loss', losses_m.avg)])
|
|
|
|
|
|
|
|
|
|
|
|
def validate(
|
|
|
|
model,
|
|
|
|
loader,
|
|
|
|
loss_fn,
|
|
|
|
args,
|
|
|
|
device=torch.device('cuda'),
|
|
|
|
amp_autocast=suppress,
|
|
|
|
log_suffix=''
|
|
|
|
):
|
|
|
|
batch_time_m = utils.AverageMeter()
|
|
|
|
losses_m = utils.AverageMeter()
|
|
|
|
top1_m = utils.AverageMeter()
|
|
|
|
top5_m = utils.AverageMeter()
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
end = time.time()
|
|
|
|
last_idx = len(loader) - 1
|
|
|
|
with torch.no_grad():
|
|
|
|
for batch_idx, (input, target) in enumerate(loader):
|
|
|
|
last_batch = batch_idx == last_idx
|
|
|
|
if not args.prefetcher:
|
|
|
|
input = input.to(device)
|
|
|
|
target = target.to(device)
|
|
|
|
if args.channels_last:
|
|
|
|
input = input.contiguous(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
with amp_autocast():
|
|
|
|
output = model(input)
|
|
|
|
if isinstance(output, (tuple, list)):
|
|
|
|
output = output[0]
|
|
|
|
|
|
|
|
# augmentation reduction
|
|
|
|
reduce_factor = args.tta
|
|
|
|
if reduce_factor > 1:
|
|
|
|
output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
|
|
|
|
target = target[0:target.size(0):reduce_factor]
|
|
|
|
|
|
|
|
loss = loss_fn(output, target)
|
|
|
|
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
|
|
|
|
|
|
|
|
if args.distributed:
|
|
|
|
reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
|
|
|
|
acc1 = utils.reduce_tensor(acc1, args.world_size)
|
|
|
|
acc5 = utils.reduce_tensor(acc5, args.world_size)
|
|
|
|
else:
|
|
|
|
reduced_loss = loss.data
|
|
|
|
|
|
|
|
if device.type == 'cuda':
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
losses_m.update(reduced_loss.item(), input.size(0))
|
|
|
|
top1_m.update(acc1.item(), output.size(0))
|
|
|
|
top5_m.update(acc5.item(), output.size(0))
|
|
|
|
|
|
|
|
batch_time_m.update(time.time() - end)
|
|
|
|
end = time.time()
|
|
|
|
if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0):
|
|
|
|
log_name = 'Test' + log_suffix
|
|
|
|
_logger.info(
|
|
|
|
'{0}: [{1:>4d}/{2}] '
|
|
|
|
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
|
|
|
|
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
|
|
|
|
'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) '
|
|
|
|
'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format(
|
|
|
|
log_name, batch_idx, last_idx,
|
|
|
|
batch_time=batch_time_m,
|
|
|
|
loss=losses_m,
|
|
|
|
top1=top1_m,
|
|
|
|
top5=top5_m)
|
|
|
|
)
|
|
|
|
|
|
|
|
metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)])
|
|
|
|
|
|
|
|
return metrics
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|