Data improvements. Improve train support for in_chans != 3. Add wds dataset support from bits_and_tpu branch w/ fixes and tweaks. TFDS tweaks.
parent
87939e6fab
commit
b8c8550841
@ -0,0 +1,448 @@
|
||||
""" Dataset parser interface for webdataset
|
||||
|
||||
Hacked together by / Copyright 2022 Ross Wightman
|
||||
"""
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from itertools import islice
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import yaml
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset, IterableDataset, get_worker_info
|
||||
|
||||
try:
|
||||
import webdataset as wds
|
||||
from webdataset.filters import _shuffle
|
||||
from webdataset.shardlists import expand_urls
|
||||
from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample
|
||||
except ImportError:
|
||||
wds = None
|
||||
expand_urls = None
|
||||
|
||||
from .parser import Parser
|
||||
from .shared_count import SharedCount
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
SHUFFLE_SIZE = os.environ.get('WDS_SHUFFLE_SIZE', 8192)
|
||||
|
||||
|
||||
def _load_info(root, basename='info'):
|
||||
info_json = os.path.join(root, basename + '.json')
|
||||
info_yaml = os.path.join(root, basename + '.yaml')
|
||||
err_str = ''
|
||||
try:
|
||||
with wds.gopen.gopen(info_json) as f:
|
||||
info_dict = json.load(f)
|
||||
return info_dict
|
||||
except Exception as e:
|
||||
err_str = str(e)
|
||||
try:
|
||||
with wds.gopen.gopen(info_yaml) as f:
|
||||
info_dict = yaml.safe_load(f)
|
||||
return info_dict
|
||||
except Exception:
|
||||
pass
|
||||
_logger.warning(
|
||||
f'Dataset info file not found at {info_json} or {info_yaml}. Error: {err_str}. '
|
||||
'Falling back to provided split and size arg.')
|
||||
return {}
|
||||
|
||||
|
||||
@dataclass
|
||||
class SplitInfo:
|
||||
num_samples: int
|
||||
filenames: Tuple[str]
|
||||
shard_lengths: Tuple[int] = ()
|
||||
alt_label: str = ''
|
||||
name: str = ''
|
||||
|
||||
|
||||
def _parse_split_info(split: str, info: Dict):
|
||||
def _info_convert(dict_info):
|
||||
return SplitInfo(
|
||||
num_samples=dict_info['num_samples'],
|
||||
filenames=tuple(dict_info['filenames']),
|
||||
shard_lengths=tuple(dict_info['shard_lengths']),
|
||||
alt_label=dict_info.get('alt_label', ''),
|
||||
name=dict_info['name'],
|
||||
)
|
||||
|
||||
if 'tar' in split or '..' in split:
|
||||
# split in WDS string braceexpand format, sample count can be included with a | separator
|
||||
# ex: `dataset-split-{0000..9999}.tar|100000` for 9999 shards, covering 100,000 samples
|
||||
split = split.split('|')
|
||||
num_samples = 0
|
||||
split_name = ''
|
||||
if len(split) > 1:
|
||||
num_samples = int(split[1])
|
||||
split = split[0]
|
||||
if '::' not in split:
|
||||
split_parts = split.split('-', 3)
|
||||
split_idx = len(split_parts) - 1
|
||||
if split_idx and 'splits' in info and split_parts[split_idx] in info['splits']:
|
||||
split_name = split_parts[split_idx]
|
||||
|
||||
split_filenames = expand_urls(split)
|
||||
if split_name:
|
||||
split_info = info['splits'][split_name]
|
||||
if not num_samples:
|
||||
_fc = {f: c for f, c in zip(split_info['filenames'], split_info['shard_lengths'])}
|
||||
num_samples = sum(_fc[f] for f in split_filenames)
|
||||
split_info['filenames'] = tuple(_fc.keys())
|
||||
split_info['shard_lengths'] = tuple(_fc.values())
|
||||
split_info['num_samples'] = num_samples
|
||||
split_info = _info_convert(split_info)
|
||||
else:
|
||||
split_info = SplitInfo(
|
||||
name=split_name,
|
||||
num_samples=num_samples,
|
||||
filenames=split_filenames,
|
||||
)
|
||||
else:
|
||||
if split not in info['splits']:
|
||||
raise RuntimeError(f"split {split} not found in info ({info['splits'].keys()})")
|
||||
split = split
|
||||
split_info = info['splits'][split]
|
||||
split_info = _info_convert(split_info)
|
||||
|
||||
return split_info
|
||||
|
||||
|
||||
def log_and_continue(exn):
|
||||
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
|
||||
_logger.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
|
||||
return True
|
||||
|
||||
|
||||
def _decode(
|
||||
sample,
|
||||
image_key='jpg',
|
||||
image_format='RGB',
|
||||
target_key='cls',
|
||||
alt_label=''
|
||||
):
|
||||
""" Custom sample decode
|
||||
* decode and convert PIL Image
|
||||
* cls byte string label to int
|
||||
* pass through JSON byte string (if it exists) without parse
|
||||
"""
|
||||
# decode class label, skip if alternate label not valid
|
||||
if alt_label:
|
||||
# alternative labels are encoded in json metadata
|
||||
meta = json.loads(sample['json'])
|
||||
class_label = int(meta[alt_label])
|
||||
if class_label < 0:
|
||||
# skipped labels currently encoded as -1, may change to a null/None value
|
||||
return None
|
||||
else:
|
||||
class_label = int(sample[target_key])
|
||||
|
||||
# decode image
|
||||
with io.BytesIO(sample[image_key]) as b:
|
||||
img = Image.open(b)
|
||||
img.load()
|
||||
if image_format:
|
||||
img = img.convert(image_format)
|
||||
|
||||
# json passed through in undecoded state
|
||||
decoded = dict(jpg=img, cls=class_label, json=sample.get('json', None))
|
||||
return decoded
|
||||
|
||||
|
||||
def _decode_samples(
|
||||
data,
|
||||
image_key='jpg',
|
||||
image_format='RGB',
|
||||
target_key='cls',
|
||||
alt_label='',
|
||||
handler=log_and_continue):
|
||||
"""Decode samples with skip."""
|
||||
for sample in data:
|
||||
try:
|
||||
result = _decode(
|
||||
sample,
|
||||
image_key=image_key,
|
||||
image_format=image_format,
|
||||
target_key=target_key,
|
||||
alt_label=alt_label
|
||||
)
|
||||
except Exception as exn:
|
||||
if handler(exn):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
# null results are skipped
|
||||
if result is not None:
|
||||
if isinstance(sample, dict) and isinstance(result, dict):
|
||||
result["__key__"] = sample.get("__key__")
|
||||
yield result
|
||||
|
||||
|
||||
def pytorch_worker_seed():
|
||||
"""get dataloader worker seed from pytorch"""
|
||||
worker_info = get_worker_info()
|
||||
if worker_info is not None:
|
||||
# favour the seed already created for pytorch dataloader workers if it exists
|
||||
return worker_info.seed
|
||||
# fallback to wds rank based seed
|
||||
return wds.utils.pytorch_worker_seed()
|
||||
|
||||
|
||||
if wds is not None:
|
||||
# conditional to avoid mandatory wds import (via inheritance of wds.PipelineStage)
|
||||
class detshuffle2(wds.PipelineStage):
|
||||
def __init__(
|
||||
self,
|
||||
bufsize=1000,
|
||||
initial=100,
|
||||
seed=0,
|
||||
epoch=-1,
|
||||
):
|
||||
self.bufsize = bufsize
|
||||
self.initial = initial
|
||||
self.seed = seed
|
||||
self.epoch = epoch
|
||||
|
||||
def run(self, src):
|
||||
if isinstance(self.epoch, SharedCount):
|
||||
epoch = self.epoch.value
|
||||
else:
|
||||
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
|
||||
# situation as different workers may wrap at different times (or not at all).
|
||||
self.epoch += 1
|
||||
epoch = self.epoch
|
||||
|
||||
if self.seed < 0:
|
||||
seed = pytorch_worker_seed() + epoch
|
||||
else:
|
||||
seed = self.seed + epoch
|
||||
_logger.info('shuffle', self.seed, epoch, seed) # FIXME temporary
|
||||
rng = random.Random(seed)
|
||||
return _shuffle(src, self.bufsize, self.initial, rng)
|
||||
|
||||
else:
|
||||
detshuffle2 = None
|
||||
|
||||
|
||||
class ResampledShards2(IterableDataset):
|
||||
"""An iterable dataset yielding a list of urls."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
urls,
|
||||
nshards=sys.maxsize,
|
||||
worker_seed=None,
|
||||
deterministic=True,
|
||||
epoch=-1,
|
||||
):
|
||||
"""Sample shards from the shard list with replacement.
|
||||
|
||||
:param urls: a list of URLs as a Python list or brace notation string
|
||||
"""
|
||||
super().__init__()
|
||||
urls = wds.shardlists.expand_urls(urls)
|
||||
self.urls = urls
|
||||
assert isinstance(self.urls[0], str)
|
||||
self.nshards = nshards
|
||||
self.rng = random.Random()
|
||||
self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed
|
||||
self.deterministic = deterministic
|
||||
self.epoch = epoch
|
||||
|
||||
def __iter__(self):
|
||||
"""Return an iterator over the shards."""
|
||||
if isinstance(self.epoch, SharedCount):
|
||||
epoch = self.epoch.value
|
||||
else:
|
||||
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
|
||||
# situation as different workers may wrap at different times (or not at all).
|
||||
self.epoch += 1
|
||||
epoch = self.epoch
|
||||
|
||||
if self.deterministic:
|
||||
# reset seed w/ epoch if deterministic, worker seed should be deterministic due to arg.seed
|
||||
self.rng = random.Random(self.worker_seed() + epoch)
|
||||
|
||||
for _ in range(self.nshards):
|
||||
index = self.rng.randint(0, len(self.urls) - 1)
|
||||
yield dict(url=self.urls[index])
|
||||
|
||||
|
||||
class ParserWds(Parser):
|
||||
def __init__(
|
||||
self,
|
||||
root,
|
||||
name,
|
||||
split,
|
||||
is_training=False,
|
||||
batch_size=None,
|
||||
repeats=0,
|
||||
seed=42,
|
||||
input_name='jpg',
|
||||
input_image='RGB',
|
||||
target_name='cls',
|
||||
target_image='',
|
||||
prefetch_size=None,
|
||||
shuffle_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
if wds is None:
|
||||
raise RuntimeError(
|
||||
'Please install webdataset 0.2.x package `pip install git+https://github.com/webdataset/webdataset`.')
|
||||
self.root = root
|
||||
self.is_training = is_training
|
||||
self.batch_size = batch_size
|
||||
self.repeats = repeats
|
||||
self.common_seed = seed # a seed that's fixed across all worker / distributed instances
|
||||
self.shard_shuffle_size = 500
|
||||
self.sample_shuffle_size = shuffle_size or SHUFFLE_SIZE
|
||||
|
||||
self.image_key = input_name
|
||||
self.image_format = input_image
|
||||
self.target_key = target_name
|
||||
self.filename_key = 'filename'
|
||||
self.key_ext = '.JPEG' # extension to add to key for original filenames (DS specific, default ImageNet)
|
||||
|
||||
self.info = _load_info(self.root)
|
||||
self.split_info = _parse_split_info(split, self.info)
|
||||
self.num_samples = self.split_info.num_samples
|
||||
if not self.num_samples:
|
||||
raise RuntimeError(f'Invalid split definition, no samples found.')
|
||||
|
||||
# Distributed world state
|
||||
self.dist_rank = 0
|
||||
self.dist_num_replicas = 1
|
||||
if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1:
|
||||
self.dist_rank = dist.get_rank()
|
||||
self.dist_num_replicas = dist.get_world_size()
|
||||
|
||||
# Attributes that are updated in _lazy_init
|
||||
self.worker_info = None
|
||||
self.worker_id = 0
|
||||
self.worker_seed = seed # seed unique to each worker instance
|
||||
self.num_workers = 1
|
||||
self.global_worker_id = 0
|
||||
self.global_num_workers = 1
|
||||
self.init_count = 0
|
||||
self.epoch_count = SharedCount()
|
||||
|
||||
# DataPipeline is lazy init, majority of WDS DataPipeline could be init here, BUT, shuffle seed
|
||||
# is not handled in manner where it can be deterministic for each worker AND initialized up front
|
||||
self.ds = None
|
||||
|
||||
def set_epoch(self, count):
|
||||
self.epoch_count.value = count
|
||||
|
||||
def _lazy_init(self):
|
||||
""" Lazily initialize worker (in worker processes)
|
||||
"""
|
||||
if self.worker_info is None:
|
||||
worker_info = torch.utils.data.get_worker_info()
|
||||
if worker_info is not None:
|
||||
self.worker_info = worker_info
|
||||
self.worker_id = worker_info.id
|
||||
self.worker_seed = worker_info.seed
|
||||
self.num_workers = worker_info.num_workers
|
||||
self.global_num_workers = self.dist_num_replicas * self.num_workers
|
||||
self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id
|
||||
|
||||
# init data pipeline
|
||||
abs_shard_filenames = [os.path.join(self.root, f) for f in self.split_info.filenames]
|
||||
pipeline = [wds.SimpleShardList(abs_shard_filenames)]
|
||||
# at this point we have an iterator over all the shards
|
||||
if self.is_training:
|
||||
pipeline.extend([
|
||||
detshuffle2(self.shard_shuffle_size, seed=self.common_seed, epoch=self.epoch_count),
|
||||
self._split_by_node_and_worker,
|
||||
# at this point, we have an iterator over the shards assigned to each worker
|
||||
wds.tarfile_to_samples(handler=log_and_continue),
|
||||
wds.shuffle(
|
||||
self.sample_shuffle_size,
|
||||
rng=random.Random(self.worker_seed)), # this is why we lazy-init whole DataPipeline
|
||||
])
|
||||
else:
|
||||
pipeline.extend([
|
||||
self._split_by_node_and_worker,
|
||||
# at this point, we have an iterator over the shards assigned to each worker
|
||||
wds.tarfile_to_samples(handler=log_and_continue),
|
||||
])
|
||||
pipeline.extend([
|
||||
partial(
|
||||
_decode_samples,
|
||||
image_key=self.image_key,
|
||||
image_format=self.image_format,
|
||||
alt_label=self.split_info.alt_label
|
||||
)
|
||||
])
|
||||
self.ds = wds.DataPipeline(*pipeline)
|
||||
|
||||
def _split_by_node_and_worker(self, src):
|
||||
if self.global_num_workers > 1:
|
||||
for s in islice(src, self.global_worker_id, None, self.global_num_workers):
|
||||
yield s
|
||||
else:
|
||||
for s in src:
|
||||
yield s
|
||||
|
||||
def __iter__(self):
|
||||
if self.ds is None:
|
||||
self._lazy_init()
|
||||
|
||||
if self.is_training:
|
||||
num_worker_samples = math.floor(self.num_samples / self.global_num_workers)
|
||||
if self.batch_size is not None:
|
||||
num_worker_samples = (num_worker_samples // self.batch_size) * self.batch_size
|
||||
ds = self.ds.with_epoch(num_worker_samples)
|
||||
else:
|
||||
if self.dist_num_replicas > 1:
|
||||
# doing distributed validation w/ WDS is messy, hard to meet constraints that
|
||||
# same # of batches needed across all replicas w/ seeing each sample once.
|
||||
# with_epoch() is simple but could miss a shard's worth of samples in some workers,
|
||||
# and duplicate in others. Best to keep num DL workers low and a divisor of #val shards.
|
||||
num_worker_samples = math.ceil(self.num_samples / self.global_num_workers)
|
||||
ds = self.ds.with_epoch(num_worker_samples)
|
||||
else:
|
||||
ds = self.ds
|
||||
|
||||
i = 0
|
||||
_logger.info('start', i, self.worker_id) # FIXME temporary debug
|
||||
for sample in ds:
|
||||
yield sample[self.image_key], sample[self.target_key]
|
||||
i += 1
|
||||
_logger.info('end', i, self.worker_id) # FIXME temporary debug
|
||||
|
||||
def __len__(self):
|
||||
return math.ceil(max(1, self.repeats) * self.num_samples / self.dist_num_replicas)
|
||||
|
||||
def _filename(self, index, basename=False, absolute=False):
|
||||
assert False, "Not supported" # no random access to examples
|
||||
|
||||
def filenames(self, basename=False, absolute=False):
|
||||
""" Return all filenames in dataset, overrides base"""
|
||||
if self.ds is None:
|
||||
self._lazy_init()
|
||||
|
||||
names = []
|
||||
for sample in self.ds:
|
||||
if self.filename_key in sample:
|
||||
name = sample[self.filename_key]
|
||||
elif '__key__' in sample:
|
||||
name = sample['__key__'] + self.key_ext
|
||||
else:
|
||||
assert False, "No supported name field present"
|
||||
names.append(name)
|
||||
if len(names) >= self.num_samples:
|
||||
break # safety for ds.repeat() case
|
||||
return names
|
@ -0,0 +1,14 @@
|
||||
from multiprocessing import Value
|
||||
|
||||
|
||||
class SharedCount:
|
||||
def __init__(self, epoch: int = 0):
|
||||
self.shared_epoch = Value('i', epoch)
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
return self.shared_epoch.value
|
||||
|
||||
@value.setter
|
||||
def value(self, epoch):
|
||||
self.shared_epoch.value = epoch
|
Loading…
Reference in new issue