You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/sknet.py

239 lines
8.7 KiB

""" Selective Kernel Networks (ResNet base)
Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586)
This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268)
and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer
to the original paper with some modifications of my own to better balance param count vs accuracy.
Hacked together by / Copyright 2020 Ross Wightman
"""
import math
from torch import nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectiveKernel, ConvNormAct, create_attn
from ._builder import build_model_with_cfg
from ._registry import register_model
from .resnet import ResNet
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
'skresnet18': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'),
'skresnet34': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth'),
'skresnet50': _cfg(),
'skresnet50d': _cfg(
first_conv='conv1.0'),
'skresnext50_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'),
}
class SelectiveKernelBasic(nn.Module):
expansion = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
cardinality=1,
base_width=64,
sk_kwargs=None,
reduce_first=1,
dilation=1,
first_dilation=None,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_layer=None,
aa_layer=None,
drop_block=None,
drop_path=None,
):
super(SelectiveKernelBasic, self).__init__()
sk_kwargs = sk_kwargs or {}
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
assert base_width == 64, 'BasicBlock doest not support changing base width'
first_planes = planes // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = SelectiveKernel(
inplanes, first_planes, stride=stride, dilation=first_dilation,
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs)
self.conv2 = ConvNormAct(
first_planes, outplanes, kernel_size=3, dilation=dilation, apply_act=False, **conv_kwargs)
self.se = create_attn(attn_layer, outplanes)
self.act = act_layer(inplace=True)
self.downsample = downsample
self.drop_path = drop_path
def zero_init_last(self):
if getattr(self.conv2.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv2.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act(x)
return x
class SelectiveKernelBottleneck(nn.Module):
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
cardinality=1,
base_width=64,
sk_kwargs=None,
reduce_first=1,
dilation=1,
first_dilation=None,
act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d,
attn_layer=None,
aa_layer=None,
drop_block=None,
drop_path=None,
):
super(SelectiveKernelBottleneck, self).__init__()
sk_kwargs = sk_kwargs or {}
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
width = int(math.floor(planes * (base_width / 64)) * cardinality)
first_planes = width // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = ConvNormAct(inplanes, first_planes, kernel_size=1, **conv_kwargs)
self.conv2 = SelectiveKernel(
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality,
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs)
self.conv3 = ConvNormAct(width, outplanes, kernel_size=1, apply_act=False, **conv_kwargs)
self.se = create_attn(attn_layer, outplanes)
self.act = act_layer(inplace=True)
self.downsample = downsample
self.drop_path = drop_path
def zero_init_last(self):
if getattr(self.conv3.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv3.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act(x)
return x
def _create_skresnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(ResNet, variant, pretrained, **kwargs)
@register_model
def skresnet18(pretrained=False, **kwargs):
"""Constructs a Selective Kernel ResNet-18 model.
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
variation splits the input channels to the selective convolutions to keep param count down.
"""
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
model_args = dict(
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet18', pretrained, **model_args)
@register_model
def skresnet34(pretrained=False, **kwargs):
"""Constructs a Selective Kernel ResNet-34 model.
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
variation splits the input channels to the selective convolutions to keep param count down.
"""
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
model_args = dict(
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet34', pretrained, **model_args)
@register_model
def skresnet50(pretrained=False, **kwargs):
"""Constructs a Select Kernel ResNet-50 model.
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
variation splits the input channels to the selective convolutions to keep param count down.
"""
sk_kwargs = dict(split_input=True)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
zero_init_last=False, **kwargs)
return _create_skresnet('skresnet50', pretrained, **model_args)
@register_model
def skresnet50d(pretrained=False, **kwargs):
"""Constructs a Select Kernel ResNet-50-D model.
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
variation splits the input channels to the selective convolutions to keep param count down.
"""
sk_kwargs = dict(split_input=True)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
return _create_skresnet('skresnet50d', pretrained, **model_args)
@register_model
def skresnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
the SKNet-50 model in the Select Kernel Paper
"""
sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False)
model_args = dict(
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args)