update readme

master
Yanhong Zeng 4 years ago
parent 973368b8b7
commit 6b5d6ca0ef

@ -8,7 +8,9 @@ AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpaint
<!-- ------------------------------------------------ --> <!-- ------------------------------------------------ -->
## Citation ## Citation
If any part of our paper and code is helpful to your work, please generously cite with: If any part of our paper and code is helpful to your work,
please generously cite and star us :kissing_heart: :kissing_heart: :kissing_heart: !
``` ```
@inproceedings{yan2021agg, @inproceedings{yan2021agg,
author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining}, author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
@ -59,6 +61,8 @@ conda activate inpainting
<!-- --------------------------------- --> <!-- --------------------------------- -->
## Datasets ## Datasets
1. download images and masks
2. specify the path to training data by `--dir_image` and `--dir_mask`.
@ -66,27 +70,37 @@ conda activate inpainting
## Getting Started ## Getting Started
1. Training: 1. Training:
* Prepare training images filelist [[our split]](https://drive.google.com/open?id=1_j51UEiZluWz07qTGtJ7Pbfeyp1-aZBg)
* Modify [celebahq.json](configs/celebahq.json) to set path to data, iterations, and other parameters.
* Our codes are built upon distributed training with Pytorch. * Our codes are built upon distributed training with Pytorch.
* Run `python train.py -c [config_file] -n [model_name] -m [mask_type] -s [image_size] `. * Run `python train.py `.
* For example, `python train.py -c configs/celebahq.json -n pennet -m pconv -s 512 `
2. Resume training: 2. Resume training:
* Run `python train.py -n pennet -m pconv -s 512 `. * Run `python train.py --resume `.
3. Testing: 3. Testing:
* Run `python test.py -c [config_file] -n [model_name] -m [mask_type] -s [image_size] `. * Run `python test.py --pre_train [path to pretrained model] `.
* For example, `python test.py -c configs/celebahq.json -n pennet -m pconv -s 512 `
4. Evaluating: 4. Evaluating:
* Run `python eval.py -r [result_path]` * Run `python eval.py --real_dir [ground truths] --fake_dir [inpainting results] --metric mae psnr ssim fid`
<!-- ------------------------------------------------------------------- --> <!-- ------------------------------------------------------------------- -->
## Pretrained models ## Pretrained models
[CELEBA-HQ](https://drive.google.com/open?id=1d7JsTXxrF9vn-2abB63FQtnPJw6FpLm8) | [CELEBA-HQ](https://drive.google.com/drive/folders/1Zks5Hyb9WAEpupbTdBqsCafmb25yqsGJ?usp=sharing) |
[Places2](https://drive.google.com/open?id=19u5qfnp42o7ojSMeJhjnqbenTKx3i2TP) [Places2](https://drive.google.com/drive/folders/1bSOH-2nB3feFRyDEmiX81CEiWkghss3i?usp=sharing)
Download the model dirs and put it under `experiments/` Download the model dirs and put it under `experiments/`
<!-- ------------------------------------------------------------------- -->
## Demo
1. Run by `python demo.py --dir_image [fold to images] --pre_train [folder to model] --painter [bbox|freeform]`
2. Press '+' or '-' to control the thickness of painter.
3. Press 'r' to reset mask; 'k' to keep existing modifications; 's' to save results.
4. Press space to perform inpainting; 'n' to move to next image; 'Esc' to quit demo.
![face](https://github.com/researchmm/AOT-GAN-for-Inpainting/blob/master/docs/face.gif?raw=true)
![logo](https://github.com/researchmm/AOT-GAN-for-Inpainting/blob/master/docs/logo.gif?raw=true)
<!-- ------------------------ --> <!-- ------------------------ -->
## TensorBoard ## TensorBoard
Visualization on TensorBoard for training is supported. Visualization on TensorBoard for training is supported.
@ -94,5 +108,9 @@ Visualization on TensorBoard for training is supported.
Run `tensorboard --logdir [log_fold] --bind_all` and open browser to view training progress. Run `tensorboard --logdir [log_fold] --bind_all` and open browser to view training progress.
### License
Licensed under an MIT license. <!-- ------------------------ -->
## Acknowledgements
We would like to thank [edge-connect](https://github.com/knazeri/edge-connect), [EDSR_PyTorch](https://github.com/sanghyun-son/EDSR-PyTorch).

Loading…
Cancel
Save