diarization : more unsuccessful clustering experiments

pull/130/head
Georgi Gerganov 2 years ago
parent c2f5be7c11
commit d5d7769fa7
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

187
ggml.c

@ -8517,6 +8517,193 @@ enum ggml_opt_result ggml_opt(
////////////////////////////////////////////////////////////////////////////////
void ggml_svd_reduce_dims(
int ne0,
int ne1,
float * a,
int nd) {
int n = ne1;
int m = ne0;
float * A = a;
float * A0 = (float *) malloc(n * m * sizeof(float));
// average vector
float * M = (float *) malloc(m * sizeof(float));
{
for (int j = 0; j < m; ++j) {
M[j] = 0.0f;
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
M[j] += A[i * m + j];
}
}
for (int j = 0; j < m; ++j) {
M[j] /= (float) n;
}
}
// subtract average vector
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
A[i * m + j] -= M[j];
}
}
memcpy(A0, A, n * m * sizeof(float));
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", A[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// SVD
// A = U * S * V^T
float * U = (float *) malloc(n * m * sizeof(float));
float * S = (float *) malloc(n * sizeof(float));
float * V = (float *) malloc(n * n * sizeof(float));
int lda = m;
int ldu = m;
int ldvt = n;
float work_size;
int lwork = -1;
int info = 0;
sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, &work_size, &lwork, &info);
lwork = (int) work_size;
//printf("work_size = %f, info = %d, lwork = %d\n", work_size, info, lwork);
float * work = (float *) malloc(lwork * sizeof(float));
sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, work, &lwork, &info);
free(work);
// print U
//printf("U:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", U[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// normalize S
{
double sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += S[i];
}
sum *= sqrt((double) m);
for (int i = 0; i < n; ++i) {
S[i] /= sum;
}
}
// print S
//printf("S:\n");
//for (int i = 0; i < n; ++i) {
// printf("- %d = %9.5f\n", i, S[i]);
//}
//printf("\n");
// print V
//printf("V:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < n; ++j) {
// printf("%9.5f ", V[i * n + j]);
// }
// printf("\n");
//}
//printf("\n");
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", A[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// compute singular vectors in U
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
U[i * m + j] *= S[i];
}
}
// normalize U
for (int i = 0; i < n; ++i) {
double sum = 0.0;
for (int j = 0; j < m; ++j) {
sum += U[i * m + j] * U[i * m + j];
}
sum = sqrt(sum);
for (int j = 0; j < m; ++j) {
U[i * m + j] /= sum*sqrt((double) m);
}
}
// print U
//printf("U:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < m; ++j) {
// printf("%9.5f ", U[i * m + j]);
// }
// printf("\n");
//}
//printf("\n");
// project A0 onto U
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
A[i * nd + j] = 0.0f;
for (int k = 0; k < m; ++k) {
A[i * nd + j] += A0[i * m + k] * U[j * m + k];
}
}
}
// print A
//printf("A:\n");
//for (int i = 0; i < n; ++i) {
// printf("col %d : ", i);
// for (int j = 0; j < n; ++j) {
// printf("%9.5f ", A[i * n + j]);
// }
// printf("\n");
//}
//printf("\n");
free(U);
free(S);
free(V);
free(A0);
}
////////////////////////////////////////////////////////////////////////////////
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)
return 1;

@ -726,6 +726,16 @@ enum ggml_opt_result ggml_opt(
struct ggml_opt_params params,
struct ggml_tensor * f);
//
// Temp stuff
//
void ggml_svd_reduce_dims(
int ne0,
int ne1,
float * a,
int nd);
//
// system info
//

@ -603,8 +603,6 @@ struct whisper_context {
// [EXPERIMENTAL] speed-up techniques
int32_t exp_n_audio_ctx; // 0 - use default
std::vector<float> audio_embd;
void use_buf(struct ggml_context * ctx, int i) {
#if defined(WHISPER_USE_SCRATCH)
size_t last_size = 0;
@ -1360,7 +1358,8 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
static bool whisper_encode(
whisper_context & wctx,
const int mel_offset,
const int n_threads) {
const int n_threads,
bool repeat = false) {
const int64_t t_start_us = ggml_time_us();
const auto & model = wctx.model;
@ -1392,9 +1391,24 @@ static bool whisper_encode(
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
if (repeat == false) {
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
}
}
} else {
for (int j = 0; j < mel_inp.n_mel; ++j) {
int k = 0;
while (k < 2*n_ctx) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + k] = mel_inp.data[j*mel_inp.n_len + i];
k++;
if (k >= 2*n_ctx) {
break;
}
}
}
}
}
}
@ -1722,22 +1736,6 @@ static bool whisper_encode(
//printf("\n");
}
{
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
printf("i0 = %d, i1 = %d, (i1 - i0) = %d, embd size = %d\n", i0, i1, i1 - i0, cur->ne[0]);
wctx.audio_embd.clear();
wctx.audio_embd.resize(cur->ne[0], 0.0f);
for (int j = 0; j < cur->ne[0]; ++j) {
for (int i = i0; i < i1; ++i) {
wctx.audio_embd[j] += ((float *)(cur->data))[(i - i0)*cur->ne[0] + j];
}
wctx.audio_embd[j] /= (i1 - i0);
}
}
// pre-compute cross-attention memory
{
struct ggml_cgraph gf = {};
@ -4836,117 +4834,151 @@ void whisper_full_cluster_segments(struct whisper_context * ctx) {
const auto mel_len_save = ctx->mel.n_len;
printf("%s: mel_len_save = %d\n", __func__, mel_len_save);
std::vector<std::vector<float>> features(n_segments);
const int n_ctx = ctx->model.hparams.n_audio_ctx;
const int n_state = ctx->model.hparams.n_audio_state;
const int n_layer = ctx->model.hparams.n_audio_layer;
for (int il = 0; il < n_layer; ++il) {
std::vector<float> embd(n_segments*n_ctx*n_state);
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: layer %2d, segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, il, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
for (int i = 0; i < n_segments; ++i) {
const auto & segment_i = ctx->result_all[i];
printf("%s: segment %d: t0 = %d, t1 = %d, text = %s\n", __func__, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str());
ctx->mel.n_len = segment_i.t1;
whisper_encode(*ctx, segment_i.t0, 7, true);
ctx->mel.n_len = segment_i.t1;
whisper_encode(ctx, segment_i.t0, 4);
const size_t offs = ggml_element_size(ctx->kv_cross.k)*(il*n_ctx*n_state);
const ggml_fp16_t * f = (const ggml_fp16_t * )((const char *) ctx->kv_cross.k->data + offs);
features[i] = ctx->audio_embd;
}
for (int j = 0; j < n_ctx*n_state; ++j) {
embd[i*n_ctx*n_state + j] = ggml_fp16_to_fp32(f[j]);
}
}
const int n_features = features[0].size();
const int n_features = 64;
// fuzzy c-means clustering
const int n_clusters = 4;
ggml_svd_reduce_dims(n_ctx*n_state, n_segments, embd.data(), n_features);
std::vector<std::vector<float>> centroids(n_clusters, std::vector<float>(n_features, 0.0));
std::vector<std::vector<float>> membership(n_segments, std::vector<float>(n_clusters, 0.0));
std::vector<std::vector<float>> features(n_segments);
// initialize the centroids
for (int i = 0; i < n_clusters; ++i) {
for (int j = 0; j < n_features; ++j) {
centroids[i][j] = features[i][j];
for (int i = 0; i < n_segments; ++i) {
features[i].resize(n_features);
for (int j = 0; j < n_features; ++j) {
features[i][j] = embd[i*n_features + j];
}
}
}
// initialize the membership
for (int i = 0; i < n_segments; ++i) {
membership[i][i % n_clusters] = 1.0;
}
// fuzzy c-means clustering
const int n_clusters = 2;
// iterate
for (int i = 0; i < 100; ++i) {
// update the centroids
for (int j = 0; j < n_clusters; ++j) {
for (int k = 0; k < n_features; ++k) {
centroids[j][k] = 0.0;
std::vector<std::vector<float>> centroids(n_clusters, std::vector<float>(n_features, 0.0));
std::vector<std::vector<float>> membership(n_segments, std::vector<float>(n_clusters, 0.0));
// initialize the centroids
for (int i = 0; i < n_clusters; ++i) {
for (int j = 0; j < n_features; ++j) {
centroids[i][j] = features[i][j];
}
}
for (int j = 0; j < n_segments; ++j) {
for (int k = 0; k < n_clusters; ++k) {
for (int l = 0; l < n_features; ++l) {
centroids[k][l] += membership[j][k]*features[j][l];
}
// initialize the membership
for (int i = 0; i < n_segments; ++i) {
//membership[i][i % n_clusters] = 1.0;
for (int j = 0; j < n_clusters; ++j) {
membership[i][j] = rand() / (float) RAND_MAX;
}
}
for (int j = 0; j < n_clusters; ++j) {
float sum = 0.0;
for (int k = 0; k < n_segments; ++k) {
sum += membership[k][j];
const int niter = 10000;
// iterate
for (int i = 0; i < niter; ++i) {
// update the centroids
for (int j = 0; j < n_clusters; ++j) {
for (int k = 0; k < n_features; ++k) {
centroids[j][k] = 0.0;
}
}
for (int k = 0; k < n_features; ++k) {
centroids[j][k] /= sum;
for (int j = 0; j < n_segments; ++j) {
for (int k = 0; k < n_clusters; ++k) {
for (int l = 0; l < n_features; ++l) {
centroids[k][l] += membership[j][k]*features[j][l];
}
}
}
}
// update the membership
for (int j = 0; j < n_segments; ++j) {
for (int k = 0; k < n_clusters; ++k) {
for (int j = 0; j < n_clusters; ++j) {
float sum = 0.0;
for (int l = 0; l < n_clusters; ++l) {
//sum += std::pow(whisper_distance(features[j], centroids[k])/whisper_distance(features[j], centroids[l]), 2.0/(2.0 - 1.0));
for (int k = 0; k < n_segments; ++k) {
sum += membership[k][j];
}
// use the euclidean distance
double d0 = 0.0;
for (int m = 0; m < n_features; ++m) {
d0 += std::pow(features[j][m] - centroids[k][m], 2.0);
}
d0 = std::sqrt(d0);
for (int k = 0; k < n_features; ++k) {
centroids[j][k] /= sum;
}
}
double d1 = 0.0;
for (int m = 0; m < n_features; ++m) {
d1 += std::pow(features[j][m] - centroids[l][m], 2.0);
}
d1 = std::sqrt(d1);
if (d1 == 0.0) {
sum += 1.0;
} else {
sum += std::pow(d0/d1, 2.0/(2.0 - 1.0));
// update the membership
for (int j = 0; j < n_segments; ++j) {
for (int k = 0; k < n_clusters; ++k) {
float sum = 0.0;
for (int l = 0; l < n_clusters; ++l) {
//sum += std::pow(whisper_distance(features[j], centroids[k])/whisper_distance(features[j], centroids[l]), 2.0/(2.0 - 1.0));
// use the euclidean distance
double d0 = 0.0;
for (int m = 0; m < n_features; ++m) {
d0 += std::pow(features[j][m] - centroids[k][m], 2.0);
}
d0 = std::sqrt(d0);
double d1 = 0.0;
for (int m = 0; m < n_features; ++m) {
d1 += std::pow(features[j][m] - centroids[l][m], 2.0);
}
d1 = std::sqrt(d1);
if (d1 == 0.0) {
sum += 1.0;
} else {
sum += std::pow(d0/d1, 2.0/(1.10 - 1.0));
}
}
membership[j][k] = 1.0/sum;
}
}
membership[j][k] = 1.0/sum;
// print the membership
if (i == niter - 1) {
for (int i = 0; i < n_segments; ++i) {
printf("%s: membership %3d: ", __func__, i);
for (int j = 0; j < n_clusters; ++j) {
printf("%f ", membership[i][j]);
}
printf(" '%s'\n", ctx->result_all[i].text.c_str());
//printf("%s: features : ", __func__);
//for (int j = 0; j < n_features; ++j) {
// printf("%8.3f ", features[i][j]);
//}
//printf(" '%s'\n", ctx->result_all[i].text.c_str());
}
printf("----------------\n");
}
}
// print the membership
for (int i = 0; i < n_segments; ++i) {
printf("%s: membership %d: ", __func__, i);
for (int j = 0; j < n_clusters; ++j) {
printf("%f ", membership[i][j]);
// print the centroids
for (int i = 0; i < n_clusters; ++i) {
printf("%s: centroid %d: ", __func__, i);
for (int j = 0; j < n_features; ++j) {
printf("%f ", centroids[i][j]);
}
printf(" '%s'\n", ctx->result_all[i].text.c_str());
printf("\n");
}
printf("----------------\n");
}
// print the centroids
//for (int i = 0; i < n_clusters; ++i) {
// printf("%s: centroid %d: ", __func__, i);
// for (int j = 0; j < n_features; ++j) {
// printf("%f ", centroids[i][j]);
// }
// printf("\n");
//}
// restore the mel length
ctx->mel.n_len = mel_len_save;
}

Loading…
Cancel
Save