diff --git a/ggml.c b/ggml.c index d67612c..54094f0 100644 --- a/ggml.c +++ b/ggml.c @@ -8517,6 +8517,193 @@ enum ggml_opt_result ggml_opt( //////////////////////////////////////////////////////////////////////////////// +void ggml_svd_reduce_dims( + int ne0, + int ne1, + float * a, + int nd) { + int n = ne1; + int m = ne0; + + float * A = a; + float * A0 = (float *) malloc(n * m * sizeof(float)); + + // average vector + float * M = (float *) malloc(m * sizeof(float)); + + { + for (int j = 0; j < m; ++j) { + M[j] = 0.0f; + } + for (int i = 0; i < n; ++i) { + for (int j = 0; j < m; ++j) { + M[j] += A[i * m + j]; + } + } + for (int j = 0; j < m; ++j) { + M[j] /= (float) n; + } + } + + // subtract average vector + for (int i = 0; i < n; ++i) { + for (int j = 0; j < m; ++j) { + A[i * m + j] -= M[j]; + } + } + + memcpy(A0, A, n * m * sizeof(float)); + + // print A + //printf("A:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < m; ++j) { + // printf("%9.5f ", A[i * m + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + // SVD + // A = U * S * V^T + + float * U = (float *) malloc(n * m * sizeof(float)); + float * S = (float *) malloc(n * sizeof(float)); + float * V = (float *) malloc(n * n * sizeof(float)); + + int lda = m; + int ldu = m; + int ldvt = n; + + float work_size; + int lwork = -1; + int info = 0; + + sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, &work_size, &lwork, &info); + + lwork = (int) work_size; + + //printf("work_size = %f, info = %d, lwork = %d\n", work_size, info, lwork); + + float * work = (float *) malloc(lwork * sizeof(float)); + + sgesvd_("S", "S", &m, &n, A, &lda, S, U, &ldu, V, &ldvt, work, &lwork, &info); + + free(work); + + // print U + //printf("U:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < m; ++j) { + // printf("%9.5f ", U[i * m + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + // normalize S + { + double sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += S[i]; + } + sum *= sqrt((double) m); + for (int i = 0; i < n; ++i) { + S[i] /= sum; + } + } + + // print S + //printf("S:\n"); + //for (int i = 0; i < n; ++i) { + // printf("- %d = %9.5f\n", i, S[i]); + //} + //printf("\n"); + + // print V + //printf("V:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < n; ++j) { + // printf("%9.5f ", V[i * n + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + // print A + //printf("A:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < m; ++j) { + // printf("%9.5f ", A[i * m + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + // compute singular vectors in U + for (int i = 0; i < n; ++i) { + for (int j = 0; j < m; ++j) { + U[i * m + j] *= S[i]; + } + } + + // normalize U + for (int i = 0; i < n; ++i) { + double sum = 0.0; + for (int j = 0; j < m; ++j) { + sum += U[i * m + j] * U[i * m + j]; + } + sum = sqrt(sum); + for (int j = 0; j < m; ++j) { + U[i * m + j] /= sum*sqrt((double) m); + } + } + + // print U + //printf("U:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < m; ++j) { + // printf("%9.5f ", U[i * m + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + + // project A0 onto U + for (int i = 0; i < n; ++i) { + for (int j = 0; j < n; ++j) { + A[i * nd + j] = 0.0f; + for (int k = 0; k < m; ++k) { + A[i * nd + j] += A0[i * m + k] * U[j * m + k]; + } + } + } + + // print A + //printf("A:\n"); + //for (int i = 0; i < n; ++i) { + // printf("col %d : ", i); + // for (int j = 0; j < n; ++j) { + // printf("%9.5f ", A[i * n + j]); + // } + // printf("\n"); + //} + //printf("\n"); + + free(U); + free(S); + free(V); + free(A0); +} + +//////////////////////////////////////////////////////////////////////////////// + int ggml_cpu_has_avx(void) { #if defined(__AVX__) return 1; diff --git a/ggml.h b/ggml.h index 18f317b..e63b286 100644 --- a/ggml.h +++ b/ggml.h @@ -726,6 +726,16 @@ enum ggml_opt_result ggml_opt( struct ggml_opt_params params, struct ggml_tensor * f); +// +// Temp stuff +// + +void ggml_svd_reduce_dims( + int ne0, + int ne1, + float * a, + int nd); + // // system info // diff --git a/whisper.cpp b/whisper.cpp index 4c208b9..0b91a15 100644 --- a/whisper.cpp +++ b/whisper.cpp @@ -603,8 +603,6 @@ struct whisper_context { // [EXPERIMENTAL] speed-up techniques int32_t exp_n_audio_ctx; // 0 - use default - std::vector audio_embd; - void use_buf(struct ggml_context * ctx, int i) { #if defined(WHISPER_USE_SCRATCH) size_t last_size = 0; @@ -1360,7 +1358,8 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con static bool whisper_encode( whisper_context & wctx, const int mel_offset, - const int n_threads) { + const int n_threads, + bool repeat = false) { const int64_t t_start_us = ggml_time_us(); const auto & model = wctx.model; @@ -1392,9 +1391,24 @@ static bool whisper_encode( const int i0 = std::min(mel_offset, mel_inp.n_len); const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); - for (int j = 0; j < mel_inp.n_mel; ++j) { - for (int i = i0; i < i1; ++i) { - dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; + if (repeat == false) { + for (int j = 0; j < mel_inp.n_mel; ++j) { + for (int i = i0; i < i1; ++i) { + dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; + } + } + } else { + for (int j = 0; j < mel_inp.n_mel; ++j) { + int k = 0; + while (k < 2*n_ctx) { + for (int i = i0; i < i1; ++i) { + dst[j*2*n_ctx + k] = mel_inp.data[j*mel_inp.n_len + i]; + k++; + if (k >= 2*n_ctx) { + break; + } + } + } } } } @@ -1722,22 +1736,6 @@ static bool whisper_encode( //printf("\n"); } - { - const int i0 = std::min(mel_offset, mel_inp.n_len); - const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); - - printf("i0 = %d, i1 = %d, (i1 - i0) = %d, embd size = %d\n", i0, i1, i1 - i0, cur->ne[0]); - - wctx.audio_embd.clear(); - wctx.audio_embd.resize(cur->ne[0], 0.0f); - for (int j = 0; j < cur->ne[0]; ++j) { - for (int i = i0; i < i1; ++i) { - wctx.audio_embd[j] += ((float *)(cur->data))[(i - i0)*cur->ne[0] + j]; - } - wctx.audio_embd[j] /= (i1 - i0); - } - } - // pre-compute cross-attention memory { struct ggml_cgraph gf = {}; @@ -4836,117 +4834,151 @@ void whisper_full_cluster_segments(struct whisper_context * ctx) { const auto mel_len_save = ctx->mel.n_len; printf("%s: mel_len_save = %d\n", __func__, mel_len_save); - std::vector> features(n_segments); + const int n_ctx = ctx->model.hparams.n_audio_ctx; + const int n_state = ctx->model.hparams.n_audio_state; + const int n_layer = ctx->model.hparams.n_audio_layer; + + for (int il = 0; il < n_layer; ++il) { + std::vector embd(n_segments*n_ctx*n_state); + + for (int i = 0; i < n_segments; ++i) { + const auto & segment_i = ctx->result_all[i]; + printf("%s: layer %2d, segment %3d: t0 = %7d, t1 = %7d, text = %s\n", __func__, il, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str()); - for (int i = 0; i < n_segments; ++i) { - const auto & segment_i = ctx->result_all[i]; - printf("%s: segment %d: t0 = %d, t1 = %d, text = %s\n", __func__, i, (int) segment_i.t0, (int) segment_i.t1, segment_i.text.c_str()); + ctx->mel.n_len = segment_i.t1; + whisper_encode(*ctx, segment_i.t0, 7, true); - ctx->mel.n_len = segment_i.t1; - whisper_encode(ctx, segment_i.t0, 4); + const size_t offs = ggml_element_size(ctx->kv_cross.k)*(il*n_ctx*n_state); + const ggml_fp16_t * f = (const ggml_fp16_t * )((const char *) ctx->kv_cross.k->data + offs); - features[i] = ctx->audio_embd; - } + for (int j = 0; j < n_ctx*n_state; ++j) { + embd[i*n_ctx*n_state + j] = ggml_fp16_to_fp32(f[j]); + } + } - const int n_features = features[0].size(); + const int n_features = 64; - // fuzzy c-means clustering - const int n_clusters = 4; + ggml_svd_reduce_dims(n_ctx*n_state, n_segments, embd.data(), n_features); - std::vector> centroids(n_clusters, std::vector(n_features, 0.0)); - std::vector> membership(n_segments, std::vector(n_clusters, 0.0)); + std::vector> features(n_segments); - // initialize the centroids - for (int i = 0; i < n_clusters; ++i) { - for (int j = 0; j < n_features; ++j) { - centroids[i][j] = features[i][j]; + for (int i = 0; i < n_segments; ++i) { + features[i].resize(n_features); + for (int j = 0; j < n_features; ++j) { + features[i][j] = embd[i*n_features + j]; + } } - } - // initialize the membership - for (int i = 0; i < n_segments; ++i) { - membership[i][i % n_clusters] = 1.0; - } + // fuzzy c-means clustering + const int n_clusters = 2; - // iterate - for (int i = 0; i < 100; ++i) { - // update the centroids - for (int j = 0; j < n_clusters; ++j) { - for (int k = 0; k < n_features; ++k) { - centroids[j][k] = 0.0; + std::vector> centroids(n_clusters, std::vector(n_features, 0.0)); + std::vector> membership(n_segments, std::vector(n_clusters, 0.0)); + + // initialize the centroids + for (int i = 0; i < n_clusters; ++i) { + for (int j = 0; j < n_features; ++j) { + centroids[i][j] = features[i][j]; } } - for (int j = 0; j < n_segments; ++j) { - for (int k = 0; k < n_clusters; ++k) { - for (int l = 0; l < n_features; ++l) { - centroids[k][l] += membership[j][k]*features[j][l]; - } + // initialize the membership + for (int i = 0; i < n_segments; ++i) { + //membership[i][i % n_clusters] = 1.0; + for (int j = 0; j < n_clusters; ++j) { + membership[i][j] = rand() / (float) RAND_MAX; } } - for (int j = 0; j < n_clusters; ++j) { - float sum = 0.0; - for (int k = 0; k < n_segments; ++k) { - sum += membership[k][j]; + const int niter = 10000; + + // iterate + for (int i = 0; i < niter; ++i) { + // update the centroids + for (int j = 0; j < n_clusters; ++j) { + for (int k = 0; k < n_features; ++k) { + centroids[j][k] = 0.0; + } } - for (int k = 0; k < n_features; ++k) { - centroids[j][k] /= sum; + for (int j = 0; j < n_segments; ++j) { + for (int k = 0; k < n_clusters; ++k) { + for (int l = 0; l < n_features; ++l) { + centroids[k][l] += membership[j][k]*features[j][l]; + } + } } - } - // update the membership - for (int j = 0; j < n_segments; ++j) { - for (int k = 0; k < n_clusters; ++k) { + for (int j = 0; j < n_clusters; ++j) { float sum = 0.0; - for (int l = 0; l < n_clusters; ++l) { - //sum += std::pow(whisper_distance(features[j], centroids[k])/whisper_distance(features[j], centroids[l]), 2.0/(2.0 - 1.0)); + for (int k = 0; k < n_segments; ++k) { + sum += membership[k][j]; + } - // use the euclidean distance - double d0 = 0.0; - for (int m = 0; m < n_features; ++m) { - d0 += std::pow(features[j][m] - centroids[k][m], 2.0); - } - d0 = std::sqrt(d0); + for (int k = 0; k < n_features; ++k) { + centroids[j][k] /= sum; + } + } - double d1 = 0.0; - for (int m = 0; m < n_features; ++m) { - d1 += std::pow(features[j][m] - centroids[l][m], 2.0); - } - d1 = std::sqrt(d1); - if (d1 == 0.0) { - sum += 1.0; - } else { - sum += std::pow(d0/d1, 2.0/(2.0 - 1.0)); + // update the membership + for (int j = 0; j < n_segments; ++j) { + for (int k = 0; k < n_clusters; ++k) { + float sum = 0.0; + for (int l = 0; l < n_clusters; ++l) { + //sum += std::pow(whisper_distance(features[j], centroids[k])/whisper_distance(features[j], centroids[l]), 2.0/(2.0 - 1.0)); + + // use the euclidean distance + double d0 = 0.0; + for (int m = 0; m < n_features; ++m) { + d0 += std::pow(features[j][m] - centroids[k][m], 2.0); + } + d0 = std::sqrt(d0); + + double d1 = 0.0; + for (int m = 0; m < n_features; ++m) { + d1 += std::pow(features[j][m] - centroids[l][m], 2.0); + } + d1 = std::sqrt(d1); + + if (d1 == 0.0) { + sum += 1.0; + } else { + sum += std::pow(d0/d1, 2.0/(1.10 - 1.0)); + } } + + membership[j][k] = 1.0/sum; } + } - membership[j][k] = 1.0/sum; + // print the membership + if (i == niter - 1) { + for (int i = 0; i < n_segments; ++i) { + printf("%s: membership %3d: ", __func__, i); + for (int j = 0; j < n_clusters; ++j) { + printf("%f ", membership[i][j]); + } + printf(" '%s'\n", ctx->result_all[i].text.c_str()); + //printf("%s: features : ", __func__); + //for (int j = 0; j < n_features; ++j) { + // printf("%8.3f ", features[i][j]); + //} + //printf(" '%s'\n", ctx->result_all[i].text.c_str()); + } + printf("----------------\n"); } } - // print the membership - for (int i = 0; i < n_segments; ++i) { - printf("%s: membership %d: ", __func__, i); - for (int j = 0; j < n_clusters; ++j) { - printf("%f ", membership[i][j]); + // print the centroids + for (int i = 0; i < n_clusters; ++i) { + printf("%s: centroid %d: ", __func__, i); + for (int j = 0; j < n_features; ++j) { + printf("%f ", centroids[i][j]); } - printf(" '%s'\n", ctx->result_all[i].text.c_str()); + printf("\n"); } - printf("----------------\n"); } - // print the centroids - //for (int i = 0; i < n_clusters; ++i) { - // printf("%s: centroid %d: ", __func__, i); - // for (int j = 0; j < n_features; ++j) { - // printf("%f ", centroids[i][j]); - // } - // printf("\n"); - //} - // restore the mel length ctx->mel.n_len = mel_len_save; } -