|
|
|
@ -204,6 +204,10 @@ struct whisper_vocab {
|
|
|
|
|
std::map<token, id> token_to_id;
|
|
|
|
|
std::map<id, token> id_to_token;
|
|
|
|
|
|
|
|
|
|
// used to avoid memory allocations during sampling
|
|
|
|
|
// TODO: move to whisper_context in the future
|
|
|
|
|
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
|
|
|
|
|
|
|
|
|
id token_eot = 50256;
|
|
|
|
|
id token_sot = 50257;
|
|
|
|
|
id token_prev = 50360;
|
|
|
|
@ -551,6 +555,9 @@ static bool whisper_model_load(const std::string & fname, whisper_context & wctx
|
|
|
|
|
|
|
|
|
|
std::string word;
|
|
|
|
|
std::vector<char> tmp;
|
|
|
|
|
|
|
|
|
|
tmp.reserve(128);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
|
|
|
uint32_t len;
|
|
|
|
|
read_safe(fin, len);
|
|
|
|
@ -603,6 +610,11 @@ static bool whisper_model_load(const std::string & fname, whisper_context & wctx
|
|
|
|
|
vocab.id_to_token[i] = word;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
wctx.logits.reserve(vocab.n_vocab*model.hparams.n_text_ctx);
|
|
|
|
|
wctx.probs.reserve(vocab.n_vocab*model.hparams.n_text_ctx);
|
|
|
|
|
|
|
|
|
|
vocab.probs_id.reserve(n_vocab);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
@ -1021,7 +1033,7 @@ static bool whisper_model_load(const std::string & fname, whisper_context & wctx
|
|
|
|
|
|
|
|
|
|
std::string name;
|
|
|
|
|
std::vector<char> tmp(length); // create a buffer
|
|
|
|
|
fin.read( &tmp[0], tmp.size() ); // read to buffer
|
|
|
|
|
fin.read(&tmp[0], tmp.size()); // read to buffer
|
|
|
|
|
name.assign(&tmp[0], tmp.size());
|
|
|
|
|
|
|
|
|
|
if (model.tensors.find(name) == model.tensors.end()) {
|
|
|
|
@ -1849,7 +1861,7 @@ static bool whisper_decode(
|
|
|
|
|
|
|
|
|
|
// the most basic sampling scheme - select the top token
|
|
|
|
|
static whisper_token_data whisper_sample_best(
|
|
|
|
|
const whisper_vocab & vocab,
|
|
|
|
|
whisper_vocab & vocab,
|
|
|
|
|
const float * probs,
|
|
|
|
|
bool force_timestamp,
|
|
|
|
|
bool is_initial) {
|
|
|
|
@ -1857,11 +1869,11 @@ static whisper_token_data whisper_sample_best(
|
|
|
|
|
0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
|
const int n_logits = vocab.n_vocab;
|
|
|
|
|
|
|
|
|
|
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
|
|
|
|
probs_id.reserve(n_logits);
|
|
|
|
|
auto & probs_id = vocab.probs_id;
|
|
|
|
|
|
|
|
|
|
probs_id.clear();
|
|
|
|
|
for (int i = 0; i < n_logits; i++) {
|
|
|
|
|
probs_id.emplace_back(probs[i], i);
|
|
|
|
|
}
|
|
|
|
@ -2001,6 +2013,9 @@ static void fft(const std::vector<float> & in, std::vector<float> & out) {
|
|
|
|
|
std::vector<float> even;
|
|
|
|
|
std::vector<float> odd;
|
|
|
|
|
|
|
|
|
|
even.reserve(N/2);
|
|
|
|
|
odd.reserve(N/2);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
|
even.push_back(in[i]);
|
|
|
|
@ -2434,7 +2449,7 @@ int whisper_lang_auto_detect(
|
|
|
|
|
std::vector<std::pair<float, int>> probs_id;
|
|
|
|
|
for (const auto & kv : g_lang) {
|
|
|
|
|
const auto token_lang = whisper_token_lang(ctx, kv.second.first);
|
|
|
|
|
probs_id.emplace_back( ctx->probs[token_lang], kv.second.first );
|
|
|
|
|
probs_id.emplace_back(ctx->probs[token_lang], kv.second.first);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// sort descending
|
|
|
|
|