PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Go to file
Ross Wightman f632190fd9
Add .gitattributes
6 years ago
convert
notebooks Grammar 6 years ago
timm Register dpn107 6 years ago
.gitattributes Add .gitattributes 6 years ago
.gitignore
LICENSE
README.md Slight improvement in EfficientNet-B2 native PyTorch weights 6 years ago
clean_checkpoint.py
distributed_train.sh
inference.py A number of tweaks to arguments, epoch handling, config 6 years ago
requirements.txt Big re-org, working towards making pip/module as 'timm' 6 years ago
setup.py markdown in setup.py 6 years ago
train.py A number of tweaks to arguments, epoch handling, config 6 years ago
validate.py A number of tweaks to arguments, epoch handling, config 6 years ago

README.md

PyTorch Image Models, etc

Introduction

For each competition, personal, or freelance project involving images + Convolution Neural Networks, I build on top of an evolving collection of code and models. This repo contains a (somewhat) cleaned up and paired down iteration of that code. Hopefully it'll be of use to others.

The work of many others is present here. I've tried to make sure all source material is acknowledged:

Models

I've included a few of my favourite models, but this is not an exhaustive collection. You can't do better than Cadene's collection in that regard. Most models do have pretrained weights from their respective sources or original authors.

Use the --model arg to specify model for train, validation, inference scripts. Match the all lowercase creation fn for the model you'd like.

Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

  • All models have a common default configuration interface and API for
    • accessing/changing the classifier - get_classifier and reset_classifier
    • doing a forward pass on just the features - forward_features
    • these makes it easy to write consistent network wrappers that work with any of the models
  • All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
  • The train script works in several process/GPU modes:
    • NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    • PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    • PyTorch w/ single GPU single process (AMP optional)
  • A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
  • A 'Test Time Pool' wrapper that can wrap any of the included models and usually provide improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
  • Training schedules and techniques that provide competitive results (Cosine LR, Random Erasing, Label Smoothing, etc)
  • Mixup (as in https://arxiv.org/abs/1710.09412) - currently implementing/testing
  • An inference script that dumps output to CSV is provided as an example

Self-trained Weights

I've leveraged the training scripts in this repository to train a few of the models with missing weights to good levels of performance. These numbers are all for 224x224 training and validation image sizing with the usual 87.5% validation crop.

@ 224x224

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling
resnext50_32x4d 78.512 (21.488) 94.042 (5.958) 25M bicubic
resnet50 78.470 (21.530) 94.266 (5.734) 25.6M bicubic
seresnext26_32x4d 77.104 (22.896) 93.316 (6.684) 16.8M bicubic
efficientnet_b0 76.912 (23.088) 93.210 (6.790) 5.29M bicubic
mobilenetv3_100 75.634 (24.366) 92.708 (7.292) 5.5M bicubic
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.89M bicubic
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6M bilinear
resnet34 75.110 (24.890) 92.284 (7.716) 22M bilinear
seresnet34 74.808 (25.192) 92.124 (7.876) 22M bilinear
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.38M bicubic
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.42M bilinear
seresnet18 71.742 (28.258) 90.334 (9.666) 11.8M bicubic

@ 240x240

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.79M bicubic

@ 260x260

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling
efficientnet_b2 79.760 (20.240) 94.714 (5.286) 9.11M bicubic

Ported Weights

@ 224x224

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
gluon_senet154 81.224 (18.776) 95.356 (4.644) 115.09 bicubic
gluon_resnet152_v1s 81.012 (18.988) 95.416 (4.584) 60.32 bicubic
gluon_seresnext101_32x4d 80.902 (19.098) 95.294 (4.706) 48.96 bicubic
gluon_seresnext101_64x4d 80.890 (19.110) 95.304 (4.696) 88.23 bicubic
gluon_resnext101_64x4d 80.602 (19.398) 94.994 (5.006) 83.46 bicubic
gluon_resnet152_v1d 80.470 (19.530) 95.206 (4.794) 60.21 bicubic
gluon_resnet101_v1d 80.424 (19.576) 95.020 (4.980) 44.57 bicubic
gluon_resnext101_32x4d 80.334 (19.666) 94.926 (5.074) 44.18 bicubic
gluon_resnet101_v1s 80.300 (19.700) 95.150 (4.850) 44.67 bicubic
gluon_resnet152_v1c 79.916 (20.084) 94.842 (5.158) 60.21 bicubic
gluon_seresnext50_32x4d 79.912 (20.088) 94.818 (5.182) 27.56 bicubic
gluon_resnet152_v1b 79.692 (20.308) 94.738 (5.262) 60.19 bicubic
gluon_resnet101_v1c 79.544 (20.456) 94.586 (5.414) 44.57 bicubic
gluon_resnext50_32x4d 79.356 (20.644) 94.424 (5.576) 25.03 bicubic
gluon_resnet101_v1b 79.304 (20.696) 94.524 (5.476) 44.55 bicubic
gluon_resnet50_v1d 79.074 (20.926) 94.476 (5.524) 25.58 bicubic
gluon_resnet50_v1s 78.712 (21.288) 94.242 (5.758) 25.68 bicubic
gluon_resnet50_v1c 78.010 (21.990) 93.988 (6.012) 25.58 bicubic
gluon_resnet50_v1b 77.578 (22.422) 93.718 (6.282) 25.56 bicubic
tf_efficientnet_b0 *tfp 76.828 (23.172) 93.226 (6.774) 5.29 bicubic Google
tf_efficientnet_b0 76.528 (23.472) 93.010 (6.990) 5.29 bicubic Google
gluon_resnet34_v1b 74.580 (25.420) 91.988 (8.012) 21.80 bicubic
tflite_semnasnet_100 73.086 (26.914) 91.336 (8.664) 3.87 bicubic Google TFLite
tflite_mnasnet_100 72.398 (27.602) 90.930 (9.070) 4.36 bicubic Google TFLite
gluon_resnet18_v1b 70.830 (29.170) 89.756 (10.244) 11.69 bicubic

@ 240x240

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
tf_efficientnet_b1 *tfp 78.796 (21.204) 94.232 (5.768) 7.79 bicubic Google
tf_efficientnet_b1 78.554 (21.446) 94.098 (5.902) 7.79 bicubic Google

@ 260x260

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
tf_efficientnet_b2 *tfp 79.782 (20.218) 94.800 (5.200) 9.11 bicubic Google
tf_efficientnet_b2 79.606 (20.394) 94.712 (5.288) 9.11 bicubic Google

@ 299x299 and 300x300

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
tf_efficientnet_b3 *tfp 80.982 (19.018) 95.332 (4.668) 12.23 bicubic Google
tf_efficientnet_b3 80.874 (19.126) 95.302 (4.698) 12.23 bicubic Google
gluon_inception_v3 78.804 (21.196) 94.380 (5.620) 27.16M bicubic MxNet Gluon
tf_inception_v3 77.856 (22.144) 93.644 (6.356) 27.16M bicubic Tensorflow Slim
adv_inception_v3 77.576 (22.424) 93.724 (6.276) 27.16M bicubic Tensorflow Adv models

@ 380x380

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
tf_efficientnet_b4 82.604 (17.396) 96.128 (3.872) 19.34 bicubic Google
tf_efficientnet_b4 *tfp 82.604 (17.396) 96.094 (3.906) 19.34 bicubic Google

@ 456x456

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Source
tf_efficientnet_b5 *tfp 83.200 (16.800) 96.456 (3.544) 30.39 bicubic Google
tf_efficientnet_b5 83.176 (16.824) 96.536 (3.464) 30.39 bicubic Google

Models with *tfp next to them were scored with --tf-preprocessing flag.

The tf_efficientnet and tflite_(se)mnasnet models require an equivalent for 'SAME' padding as their arch results in asymmetric padding. I've added this in the model creation wrapper, but it does come with a performance penalty.

Usage

Environment

All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x. Little to no care has been taken to be Python 2.x friendly and I don't plan to support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.

PyTorch versions 1.0 and 1.1 have been tested with this code.

I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:

conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.0

Pip

This package can be installed via pip. Currently, the model factory (timm.create_model) is the most useful component to use via a pip install.

Install (after conda env/install):

pip install timm

Use:

>>> import timm
>>> m = timm.create_model('mobilenetv3_100', pretrained=True)
>>> m.eval()

Scripts

A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.

Training

The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a train and validation folder.

To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:

./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 -j 4

NOTE: NVIDIA APEX should be installed to run in per-process distributed via DDP or to enable AMP mixed precision with the --amp flag

Validation / Inference

Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.

To validate with the model's pretrained weights (if they exist):

python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained

To run inference from a checkpoint:

python inference.py /imagenet/validation/ --model mobilenetv3_100 --checkpoint ./output/model_best.pth.tar

TODO

A number of additions planned in the future for various projects, incl

  • Do a model performance (speed + accuracy) benchmarking across all models (make runable as script)
  • Add usage examples to comments, good hyper params for training
  • Comments, cleanup and the usual things that get pushed back