Ported Tensorflow pretrained EfficientNet weights and some model cleanup

* B0-B3 weights ported from TF with close to paper accuracy
* Renamed gen_mobilenet to gen_efficientnet since scaling params go well beyond 'mobile' specific
* Add Tensorflow preprocessing option for closer images to source repo
pull/6/head
Ross Wightman 6 years ago
parent 4efecfdc47
commit 4bb5e9b224

@ -29,8 +29,8 @@ I've included a few of my favourite models, but this is not an exhaustive collec
* PNasNet (from [Cadene](https://github.com/Cadene/pretrained-models.pytorch))
* DPN (from [me](https://github.com/rwightman/pytorch-dpn-pretrained), weights hosted by Cadene)
* DPN-68, DPN-68b, DPN-92, DPN-98, DPN-131, DPN-107
* Generic MobileNet (from my standalone [GenMobileNet](https://github.com/rwightman/genmobilenet-pytorch)) - A generic model that implements many of the mobile optimized architecture search derived models that utilize similar DepthwiseSeparable and InvertedResidual blocks
* EfficientNet (B0-B4) (https://arxiv.org/abs/1905.11946) -- work in progress, validating
* Generic EfficientNet (from my standalone [GenMobileNet](https://github.com/rwightman/genmobilenet-pytorch)) - A generic model that implements many of the mobile optimized architecture search derived models that utilize similar DepthwiseSeparable and InvertedResidual blocks
* EfficientNet (B0-B4) (https://arxiv.org/abs/1905.11946) -- validated, compat with TF weights
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
* MobileNet-V1 (https://arxiv.org/abs/1704.04861)
* MobileNet-V2 (https://arxiv.org/abs/1801.04381)
@ -39,60 +39,8 @@ I've included a few of my favourite models, but this is not an exhaustive collec
* FBNet-C (https://arxiv.org/abs/1812.03443) -- TODO A/B variants
* Single-Path NAS (https://arxiv.org/abs/1904.02877) -- pixel1 variant
The full list of model strings that can be passed to model factory via `--model` arg for train, validation, inference scripts:
```
chamnetv1_100
chamnetv2_100
densenet121
densenet161
densenet169
densenet201
dpn107
dpn131
dpn68
dpn68b
dpn92
dpn98
fbnetc_100
inception_resnet_v2
inception_v4
mnasnet_050
mnasnet_075
mnasnet_100
mnasnet_140
mnasnet_small
mobilenetv1_100
mobilenetv2_100
mobilenetv3_050
mobilenetv3_075
mobilenetv3_100
pnasnet5large
resnet101
resnet152
resnet18
resnet34
resnet50
resnext101_32x4d
resnext101_64x4d
resnext152_32x4d
resnext50_32x4d
semnasnet_050
semnasnet_075
semnasnet_100
semnasnet_140
seresnet101
seresnet152
seresnet18
seresnet34
seresnet50
seresnext101_32x4d
seresnext26_32x4d
seresnext50_32x4d
spnasnet_100
tflite_mnasnet_100
tflite_semnasnet_100
xception
```
Use the `--model` arg to specify model for train, validation, inference scripts. Match the all lowercase
creation fn for the model you'd like.
## Features
Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:
@ -126,41 +74,61 @@ I've leveraged the training scripts in this repository to train a few of the mod
### Ported Weights
#### @ 224x224
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
|---|---|---|---|---|---|
| gluon_senet154 | 81.224 (18.776) | 95.356 (4.644) | 115.09 | bicubic | |
| gluon_resnet152_v1s | 81.012 (18.988) | 95.416 (4.584) | 60.32 | bicubic | |
| gluon_seresnext101_32x4d | 80.902 (19.098) | 95.294 (4.706) | 48.96 | bicubic | |
| gluon_seresnext101_64x4d | 80.890 (19.110) | 95.304 (4.696) | 88.23 | bicubic | |
| gluon_resnext101_64x4d | 80.602 (19.398) | 94.994 (5.006) | 83.46 | bicubic | |
| gluon_resnet152_v1d | 80.470 (19.530) | 95.206 (4.794) | 60.21 | bicubic | |
| gluon_resnet101_v1d | 80.424 (19.576) | 95.020 (4.980) | 44.57 | bicubic | |
| gluon_resnext101_32x4d | 80.334 (19.666) | 94.926 (5.074) | 44.18 | bicubic | |
| gluon_resnet101_v1s | 80.300 (19.700) | 95.150 (4.850) | 44.67 | bicubic | |
| gluon_resnet152_v1c | 79.916 (20.084) | 94.842 (5.158) | 60.21 | bicubic | |
| gluon_seresnext50_32x4d | 79.912 (20.088) | 94.818 (5.182) | 27.56 | bicubic | |
| gluon_resnet152_v1b | 79.692 (20.308) | 94.738 (5.262) | 60.19 | bicubic | |
| gluon_resnet101_v1c | 79.544 (20.456) | 94.586 (5.414) | 44.57 | bicubic | |
| gluon_resnext50_32x4d | 79.356 (20.644) | 94.424 (5.576) | 25.03 | bicubic | |
| gluon_resnet101_v1b | 79.304 (20.696) | 94.524 (5.476) | 44.55 | bicubic | |
| gluon_resnet50_v1d | 79.074 (20.926) | 94.476 (5.524) | 25.58 | bicubic | |
| gluon_resnet50_v1s | 78.712 (21.288) | 94.242 (5.758) | 25.68 | bicubic | |
| gluon_resnet50_v1c | 78.010 (21.990) | 93.988 (6.012) | 25.58 | bicubic | |
| gluon_resnet50_v1b | 77.578 (22.422) | 93.718 (6.282) | 25.56 | bicubic | |
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | |
| SE-MNASNet 1.00 (A1) | 73.086 (26.914) | 91.336 (8.664) | 3.87 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |
| MNASNet 1.00 (B1) | 72.398 (27.602) | 90.930 (9.070) | 4.36 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet)
| gluon_senet154 | 81.224 (18.776) | 95.356 (4.644) | 115.09 | bicubic | |
| gluon_resnet152_v1s | 81.012 (18.988) | 95.416 (4.584) | 60.32 | bicubic | |
| gluon_seresnext101_32x4d | 80.902 (19.098) | 95.294 (4.706) | 48.96 | bicubic | |
| gluon_seresnext101_64x4d | 80.890 (19.110) | 95.304 (4.696) | 88.23 | bicubic | |
| gluon_resnext101_64x4d | 80.602 (19.398) | 94.994 (5.006) | 83.46 | bicubic | |
| gluon_resnet152_v1d | 80.470 (19.530) | 95.206 (4.794) | 60.21 | bicubic | |
| gluon_resnet101_v1d | 80.424 (19.576) | 95.020 (4.980) | 44.57 | bicubic | |
| gluon_resnext101_32x4d | 80.334 (19.666) | 94.926 (5.074) | 44.18 | bicubic | |
| gluon_resnet101_v1s | 80.300 (19.700) | 95.150 (4.850) | 44.67 | bicubic | |
| gluon_resnet152_v1c | 79.916 (20.084) | 94.842 (5.158) | 60.21 | bicubic | |
| gluon_seresnext50_32x4d | 79.912 (20.088) | 94.818 (5.182) | 27.56 | bicubic | |
| gluon_resnet152_v1b | 79.692 (20.308) | 94.738 (5.262) | 60.19 | bicubic | |
| gluon_resnet101_v1c | 79.544 (20.456) | 94.586 (5.414) | 44.57 | bicubic | |
| gluon_resnext50_32x4d | 79.356 (20.644) | 94.424 (5.576) | 25.03 | bicubic | |
| gluon_resnet101_v1b | 79.304 (20.696) | 94.524 (5.476) | 44.55 | bicubic | |
| gluon_resnet50_v1d | 79.074 (20.926) | 94.476 (5.524) | 25.58 | bicubic | |
| gluon_resnet50_v1s | 78.712 (21.288) | 94.242 (5.758) | 25.68 | bicubic | |
| gluon_resnet50_v1c | 78.010 (21.990) | 93.988 (6.012) | 25.58 | bicubic | |
| gluon_resnet50_v1b | 77.578 (22.422) | 93.718 (6.282) | 25.56 | bicubic | |
| tf_efficientnet_b0 *tfp | 76.828 (23.172) | 93.226 (6.774) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| tf_efficientnet_b0 | 76.528 (23.472) | 93.010 (6.990) | 5.29 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | |
| tflite_semnasnet_100 | 73.086 (26.914) | 91.336 (8.664) | 3.87 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |
| tflite_mnasnet_100 | 72.398 (27.602) | 90.930 (9.070) | 4.36 | bicubic | [Google TFLite](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet)
| gluon_resnet18_v1b | 70.830 (29.170) | 89.756 (10.244) | 11.69 | bicubic | |
#### @ 299x299
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
#### @ 240x240
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
|---|---|---|---|---|---|
| Gluon Inception-V3 | 78.804 (21.196) | 94.380 (5.620) | 27.16M | bicubic | [MxNet Gluon](https://gluon-cv.mxnet.io/model_zoo/classification.html) |
| Tensorflow Inception-V3 | 77.856 (22.144) | 93.644 (6.356) | 27.16M | bicubic | [Tensorflow Slim](https://github.com/tensorflow/models/tree/master/research/slim) |
| Adversarially trained Inception-V3 | 77.576 (22.424) | 93.724 (6.276) | 27.16M | bicubic | [Tensorflow Adv models](https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models) |
| tf_efficientnet_b1 *tfp | 78.796 (21.204) | 94.232 (5.768) | 7.79 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| tf_efficientnet_b1 | 78.554 (21.446) | 94.098 (5.902) | 7.79 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
#### @ 260x260
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
|---|---|---|---|---|---|
| tf_efficientnet_b2 *tfp | 79.782 (20.218) | 94.800 (5.200) | 9.11 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| tf_efficientnet_b2 | 79.606 (20.394) | 94.712 (5.288) | 9.11 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
#### @ 299x299 and 300x300
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Source |
|---|---|---|---|---|---|
| tf_efficientnet_b3 *tfp | 80.982 (19.018) | 95.332 (4.668) | 12.23 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| tf_efficientnet_b3 | 80.874 (19.126) | 95.302 (4.698) | 12.23 | bicubic | [Google](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| gluon_inception_v3 | 78.804 (21.196) | 94.380 (5.620) | 27.16M | bicubic | [MxNet Gluon](https://gluon-cv.mxnet.io/model_zoo/classification.html) |
| tf_inception_v3 | 77.856 (22.144) | 93.644 (6.356) | 27.16M | bicubic | [Tensorflow Slim](https://github.com/tensorflow/models/tree/master/research/slim) |
| adv_inception_v3 | 77.576 (22.424) | 93.724 (6.276) | 27.16M | bicubic | [Tensorflow Adv models](https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models) |
NOTE: For some reason I can't hit the stated accuracy with my impl of MNASNet and Google's tflite weights. Using a TF equivalent to 'SAME' padding was important to get > 70%, but something small is still missing. Trying to train my own weights from scratch with these models has so far to leveled off in the same 72-73% range.
Models with `*tfp` next to them were scored with `--tf-preprocessing` flag.
The `tf_efficientnet` and `tflite_(se)mnasnet` models require an equivalent for 'SAME' padding as their arch results in asymmetric padding. I've added this in the model creation wrapper, but it does come with a performance penalty.
## Script Usage
### Training

@ -7,7 +7,7 @@ import gluoncv
import torch
from models.model_factory import create_model
parser = argparse.ArgumentParser(description='Training')
parser = argparse.ArgumentParser(description='Convert from MXNet')
parser.add_argument('--model', default='all', type=str, metavar='MODEL',
help='Name of model to train (default: "all"')

@ -54,6 +54,7 @@ class Dataset(data.Dataset):
def __init__(
self,
root,
load_bytes=False,
transform=None):
imgs, _, _ = find_images_and_targets(root)
@ -62,11 +63,12 @@ class Dataset(data.Dataset):
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.load_bytes = load_bytes
self.transform = transform
def __getitem__(self, index):
path, target = self.imgs[index]
img = Image.open(path).convert('RGB')
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if target is None:

@ -89,27 +89,32 @@ def create_loader(
distributed=False,
crop_pct=None,
collate_fn=None,
tf_preprocessing=False,
):
if isinstance(input_size, tuple):
img_size = input_size[-2:]
else:
img_size = input_size
if is_training:
transform = transforms_imagenet_train(
img_size,
interpolation=interpolation,
use_prefetcher=use_prefetcher,
mean=mean,
std=std)
if tf_preprocessing and use_prefetcher:
from data.tf_preprocessing import TfPreprocessTransform
transform = TfPreprocessTransform(is_training=is_training, size=img_size)
else:
transform = transforms_imagenet_eval(
img_size,
interpolation=interpolation,
use_prefetcher=use_prefetcher,
mean=mean,
std=std,
crop_pct=crop_pct)
if is_training:
transform = transforms_imagenet_train(
img_size,
interpolation=interpolation,
use_prefetcher=use_prefetcher,
mean=mean,
std=std)
else:
transform = transforms_imagenet_eval(
img_size,
interpolation=interpolation,
use_prefetcher=use_prefetcher,
mean=mean,
std=std,
crop_pct=crop_pct)
dataset.transform = transform

@ -0,0 +1,220 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ImageNet preprocessing for MnasNet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
IMAGE_SIZE = 224
CROP_PADDING = 32
def distorted_bounding_box_crop(image_bytes,
bbox,
min_object_covered=0.1,
aspect_ratio_range=(0.75, 1.33),
area_range=(0.05, 1.0),
max_attempts=100,
scope=None):
"""Generates cropped_image using one of the bboxes randomly distorted.
See `tf.image.sample_distorted_bounding_box` for more documentation.
Args:
image_bytes: `Tensor` of binary image data.
bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
where each coordinate is [0, 1) and the coordinates are arranged
as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
image.
min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
area of the image must contain at least this fraction of any bounding
box supplied.
aspect_ratio_range: An optional list of `float`s. The cropped area of the
image must have an aspect ratio = width / height within this range.
area_range: An optional list of `float`s. The cropped area of the image
must contain a fraction of the supplied image within in this range.
max_attempts: An optional `int`. Number of attempts at generating a cropped
region of the image of the specified constraints. After `max_attempts`
failures, return the entire image.
scope: Optional `str` for name scope.
Returns:
cropped image `Tensor`
"""
with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]):
shape = tf.image.extract_jpeg_shape(image_bytes)
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
shape,
bounding_boxes=bbox,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
# Crop the image to the specified bounding box.
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
return image
def _at_least_x_are_equal(a, b, x):
"""At least `x` of `a` and `b` `Tensors` are equal."""
match = tf.equal(a, b)
match = tf.cast(match, tf.int32)
return tf.greater_equal(tf.reduce_sum(match), x)
def _decode_and_random_crop(image_bytes, image_size):
"""Make a random crop of image_size."""
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
image = distorted_bounding_box_crop(
image_bytes,
bbox,
min_object_covered=0.1,
aspect_ratio_range=(3. / 4, 4. / 3.),
area_range=(0.08, 1.0),
max_attempts=10,
scope=None)
original_shape = tf.image.extract_jpeg_shape(image_bytes)
bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3)
image = tf.cond(
bad,
lambda: _decode_and_center_crop(image_bytes, image_size),
lambda: tf.image.resize_bicubic([image], # pylint: disable=g-long-lambda
[image_size, image_size])[0])
return image
def _decode_and_center_crop(image_bytes, image_size):
"""Crops to center of image with padding then scales image_size."""
shape = tf.image.extract_jpeg_shape(image_bytes)
image_height = shape[0]
image_width = shape[1]
padded_center_crop_size = tf.cast(
((image_size / (image_size + CROP_PADDING)) *
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
tf.int32)
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
crop_window = tf.stack([offset_height, offset_width,
padded_center_crop_size, padded_center_crop_size])
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
image = tf.image.resize_bicubic([image], [image_size, image_size])[0]
return image
def _flip(image):
"""Random horizontal image flip."""
image = tf.image.random_flip_left_right(image)
return image
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
Returns:
A preprocessed image `Tensor`.
"""
image = _decode_and_random_crop(image_bytes, image_size)
image = _flip(image)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
Returns:
A preprocessed image `Tensor`.
"""
image = _decode_and_center_crop(image_bytes, image_size)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
return image
def preprocess_image(image_bytes,
is_training=False,
use_bfloat16=False,
image_size=IMAGE_SIZE):
"""Preprocesses the given image.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
is_training: `bool` for whether the preprocessing is for training.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
Returns:
A preprocessed image `Tensor` with value range of [0, 255].
"""
if is_training:
return preprocess_for_train(image_bytes, use_bfloat16, image_size)
else:
return preprocess_for_eval(image_bytes, use_bfloat16, image_size)
class TfPreprocessTransform:
def __init__(self, is_training=False, size=224):
self.is_training = is_training
self.size = size[0] if isinstance(size, tuple) else size
self._image_bytes = None
self.process_image = self._build_tf_graph()
self.sess = None
def _build_tf_graph(self):
with tf.device('/cpu:0'):
self._image_bytes = tf.placeholder(
shape=[],
dtype=tf.string,
)
img = preprocess_image(self._image_bytes, self.is_training, False, self.size)
return img
def __call__(self, image_bytes):
if self.sess is None:
self.sess = tf.Session()
img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes})
img = img.round().clip(0, 255).astype(np.uint8)
if img.ndim < 3:
img = np.expand_dims(img, axis=-1)
img = np.rollaxis(img, 2) # HWC to CHW
return img

@ -1,6 +1,6 @@
""" Generic MobileNet
""" Generic EfficientNets
A generic MobileNet class with building blocks to support a variety of models:
A generic class with building blocks to support a variety of models with efficient architectures:
* EfficientNet (B0-B4 in code right now, work in progress, still verifying)
* MNasNet B1, A1 (SE), Small
* MobileNet V1, V2, and V3 (work in progress)
@ -32,8 +32,9 @@ _models = [
'semnasnet_100', 'semnasnet_140', 'mnasnet_small', 'mobilenetv1_100', 'mobilenetv2_100',
'mobilenetv3_050', 'mobilenetv3_075', 'mobilenetv3_100', 'chamnetv1_100', 'chamnetv2_100',
'fbnetc_100', 'spnasnet_100', 'tflite_mnasnet_100', 'tflite_semnasnet_100', 'efficientnet_b0',
'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4']
__all__ = ['GenMobileNet', 'genmobilenet_model_names'] + _models
'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'tf_efficientnet_b0',
'tf_efficientnet_b1', 'tf_efficientnet_b2', 'tf_efficientnet_b3']
__all__ = ['GenEfficientNet', 'gen_efficientnet_model_names'] + _models
def _cfg(url='', **kwargs):
@ -74,6 +75,18 @@ default_cfgs = {
'efficientnet_b2': _cfg(url='', input_size=(3, 260, 260)),
'efficientnet_b3': _cfg(url='', input_size=(3, 300, 300)),
'efficientnet_b4': _cfg(url='', input_size=(3, 380, 380)),
'tf_efficientnet_b0': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth',
input_size=(3, 224, 224), interpolation='bicubic'),
'tf_efficientnet_b1': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth',
input_size=(3, 240, 240), interpolation='bicubic', crop_pct=0.882),
'tf_efficientnet_b2': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth',
input_size=(3, 260, 260), interpolation='bicubic', crop_pct=0.890),
'tf_efficientnet_b3': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth',
input_size=(3, 300, 300), interpolation='bicubic', crop_pct=0.904),
}
_DEBUG = False
@ -648,10 +661,10 @@ class InvertedResidual(nn.Module):
return x
class GenMobileNet(nn.Module):
""" Generic Mobile Net
class GenEfficientNet(nn.Module):
""" Generic EfficientNet
An implementation of mobile optimized networks that covers:
An implementation of efficient network architectures, in many cases mobile optimized networks:
* MobileNet-V1
* MobileNet-V2
* MobileNet-V3
@ -659,7 +672,7 @@ class GenMobileNet(nn.Module):
* FBNet A, B, and C
* ChamNet (arch details are murky)
* Single-Path NAS Pixel1
* EfficientNet
* EfficientNetB0-B4 (rest easy to add)
"""
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280,
@ -669,7 +682,7 @@ class GenMobileNet(nn.Module):
se_gate_fn=torch.sigmoid, se_reduce_mid=False,
global_pool='avg', head_conv='default', weight_init='goog',
folded_bn=False, padding_same=False,):
super(GenMobileNet, self).__init__()
super(GenEfficientNet, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.drop_connect_rate = drop_connect_rate
@ -783,7 +796,7 @@ def _gen_mnasnet_a1(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c320'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -823,7 +836,7 @@ def _gen_mnasnet_b1(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c320_noskip']
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -856,7 +869,7 @@ def _gen_mnasnet_small(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c144']
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=8,
@ -883,7 +896,7 @@ def _gen_mobilenet_v1(channel_multiplier, num_classes=1000, **kwargs):
['dsa_r2_k3_s2_c1024'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -915,7 +928,7 @@ def _gen_mobilenet_v2(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c320'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -956,7 +969,7 @@ def _gen_mobilenet_v3(channel_multiplier, num_classes=1000, **kwargs):
['cn_r1_k1_s1_c960'], # hard-swish
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=16,
@ -992,7 +1005,7 @@ def _gen_chamnet_v1(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e10_c104'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -1025,7 +1038,7 @@ def _gen_chamnet_v2(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c112'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -1059,7 +1072,7 @@ def _gen_fbnetc(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c352'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=16,
@ -1099,7 +1112,7 @@ def _gen_spnasnet(channel_multiplier, num_classes=1000, **kwargs):
['ir_r1_k3_s1_e6_c320_noskip']
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
model = GenEfficientNet(
_decode_arch_def(arch_def),
num_classes=num_classes,
stem_size=32,
@ -1119,9 +1132,21 @@ def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
Paper: https://arxiv.org/abs/1905.11946
EfficientNet params
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
Args:
channel_multiplier: multiplier to number of channels per layer
depth_multiplier: multiplier to number of repeats per stage
"""
arch_def = [
['ds_r1_k3_s1_e1_c16_se0.25'],
@ -1133,13 +1158,16 @@ def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=
['ir_r1_k3_s1_e6_c320_se0.25'],
]
bn_momentum, bn_eps = _resolve_bn_params(kwargs)
model = GenMobileNet(
# NOTE: other models in the family didn't scale the feature count
num_features = _round_channels(1280, channel_multiplier, 8, None)
model = GenEfficientNet(
_decode_arch_def(arch_def, depth_multiplier),
num_classes=num_classes,
stem_size=32,
channel_multiplier=channel_multiplier,
channel_divisor=8,
channel_min=None,
num_features=num_features,
bn_momentum=bn_momentum,
bn_eps=bn_eps,
act_fn=swish,
@ -1357,19 +1385,8 @@ def spnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
# EfficientNet params
# (width_coefficient, depth_coefficient, resolution, dropout_rate)
# 'efficientnet-b0': (1.0, 1.0, 224, 0.2),
# 'efficientnet-b1': (1.0, 1.1, 240, 0.2),
# 'efficientnet-b2': (1.1, 1.2, 260, 0.3),
# 'efficientnet-b3': (1.2, 1.4, 300, 0.3),
# 'efficientnet-b4': (1.4, 1.8, 380, 0.4),
# 'efficientnet-b5': (1.6, 2.2, 456, 0.4),
# 'efficientnet-b6': (1.8, 2.6, 528, 0.5),
# 'efficientnet-b7': (2.0, 3.1, 600, 0.5),
def efficientnet_b0(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
""" EfficientNet-B0 """
default_cfg = default_cfgs['efficientnet_b0']
# NOTE for train, drop_rate should be 0.2
model = _gen_efficientnet(
@ -1382,7 +1399,7 @@ def efficientnet_b0(num_classes, in_chans=3, pretrained=False, **kwargs):
def efficientnet_b1(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
""" EfficientNet-B1 """
default_cfg = default_cfgs['efficientnet_b1']
# NOTE for train, drop_rate should be 0.2
model = _gen_efficientnet(
@ -1395,7 +1412,7 @@ def efficientnet_b1(num_classes, in_chans=3, pretrained=False, **kwargs):
def efficientnet_b2(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
""" EfficientNet-B2 """
default_cfg = default_cfgs['efficientnet_b2']
# NOTE for train, drop_rate should be 0.3
model = _gen_efficientnet(
@ -1408,7 +1425,7 @@ def efficientnet_b2(num_classes, in_chans=3, pretrained=False, **kwargs):
def efficientnet_b3(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
""" EfficientNet-B3 """
default_cfg = default_cfgs['efficientnet_b3']
# NOTE for train, drop_rate should be 0.3
model = _gen_efficientnet(
@ -1421,7 +1438,7 @@ def efficientnet_b3(num_classes, in_chans=3, pretrained=False, **kwargs):
def efficientnet_b4(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet """
""" EfficientNet-B4 """
default_cfg = default_cfgs['efficientnet_b4']
# NOTE for train, drop_rate should be 0.4
model = _gen_efficientnet(
@ -1433,5 +1450,61 @@ def efficientnet_b4(num_classes, in_chans=3, pretrained=False, **kwargs):
return model
def genmobilenet_model_names():
def tf_efficientnet_b0(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet-B0. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b0']
kwargs['bn_eps'] = _BN_EPS_TF_DEFAULT
kwargs['padding_same'] = True
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.0,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def tf_efficientnet_b1(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet-B1. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b1']
kwargs['bn_eps'] = _BN_EPS_TF_DEFAULT
kwargs['padding_same'] = True
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.1,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def tf_efficientnet_b2(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet-B2. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b2']
kwargs['bn_eps'] = _BN_EPS_TF_DEFAULT
kwargs['padding_same'] = True
model = _gen_efficientnet(
channel_multiplier=1.1, depth_multiplier=1.2,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def tf_efficientnet_b3(num_classes, in_chans=3, pretrained=False, **kwargs):
""" EfficientNet-B3. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b3']
kwargs['bn_eps'] = _BN_EPS_TF_DEFAULT
kwargs['padding_same'] = True
model = _gen_efficientnet(
channel_multiplier=1.2, depth_multiplier=1.4,
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def gen_efficientnet_model_names():
return set(_models)

@ -6,7 +6,7 @@ from models.dpn import *
from models.senet import *
from models.xception import *
from models.pnasnet import *
from models.genmobilenet import *
from models.gen_efficientnet import *
from models.inception_v3 import *
from models.gluon_resnet import *
@ -23,8 +23,8 @@ def create_model(
margs = dict(num_classes=num_classes, in_chans=in_chans, pretrained=pretrained)
# Not all models have support for batchnorm params passed as args, only genmobilenet variants
supports_bn_params = model_name in genmobilenet_model_names()
# Not all models have support for batchnorm params passed as args, only gen_efficientnet variants
supports_bn_params = model_name in gen_efficientnet_model_names()
if not supports_bn_params and any([x in kwargs for x in ['bn_tf', 'bn_momentum', 'bn_eps']]):
kwargs.pop('bn_tf', None)
kwargs.pop('bn_momentum', None)

@ -44,6 +44,8 @@ parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool')
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
def main():
@ -71,7 +73,7 @@ def main():
criterion = nn.CrossEntropyLoss().cuda()
loader = create_loader(
Dataset(args.data),
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=True,
@ -79,7 +81,8 @@ def main():
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=1.0 if test_time_pool else data_config['crop_pct'])
crop_pct=1.0 if test_time_pool else data_config['crop_pct'],
tf_preprocessing=args.tf_preprocessing)
batch_time = AverageMeter()
losses = AverageMeter()

Loading…
Cancel
Save