You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
8.1 KiB
237 lines
8.1 KiB
""" Transforms Factory
|
|
Factory methods for building image transforms for use with TIMM (PyTorch Image Models)
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
"""
|
|
import math
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
|
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT
|
|
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform
|
|
from timm.data.transforms import _pil_interp, RandomResizedCropAndInterpolation, ToNumpy, ToTensor
|
|
from timm.data.random_erasing import RandomErasing
|
|
|
|
|
|
def transforms_noaug_train(
|
|
img_size=224,
|
|
interpolation='bilinear',
|
|
use_prefetcher=False,
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD,
|
|
):
|
|
if interpolation == 'random':
|
|
# random interpolation not supported with no-aug
|
|
interpolation = 'bilinear'
|
|
tfl = [
|
|
transforms.Resize(img_size, _pil_interp(interpolation)),
|
|
transforms.CenterCrop(img_size)
|
|
]
|
|
if use_prefetcher:
|
|
# prefetcher and collate will handle tensor conversion and norm
|
|
tfl += [ToNumpy()]
|
|
else:
|
|
tfl += [
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(
|
|
mean=torch.tensor(mean),
|
|
std=torch.tensor(std))
|
|
]
|
|
return transforms.Compose(tfl)
|
|
|
|
|
|
def transforms_imagenet_train(
|
|
img_size=224,
|
|
scale=None,
|
|
ratio=None,
|
|
hflip=0.5,
|
|
vflip=0.,
|
|
color_jitter=0.4,
|
|
auto_augment=None,
|
|
interpolation='random',
|
|
use_prefetcher=False,
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD,
|
|
re_prob=0.,
|
|
re_mode='const',
|
|
re_count=1,
|
|
re_num_splits=0,
|
|
separate=False,
|
|
):
|
|
"""
|
|
If separate==True, the transforms are returned as a tuple of 3 separate transforms
|
|
for use in a mixing dataset that passes
|
|
* all data through the first (primary) transform, called the 'clean' data
|
|
* a portion of the data through the secondary transform
|
|
* normalizes and converts the branches above with the third, final transform
|
|
"""
|
|
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range
|
|
ratio = tuple(ratio or (3./4., 4./3.)) # default imagenet ratio range
|
|
primary_tfl = [
|
|
RandomResizedCropAndInterpolation(img_size, scale=scale, ratio=ratio, interpolation=interpolation)]
|
|
if hflip > 0.:
|
|
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
|
|
if vflip > 0.:
|
|
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]
|
|
|
|
secondary_tfl = []
|
|
if auto_augment:
|
|
assert isinstance(auto_augment, str)
|
|
if isinstance(img_size, (tuple, list)):
|
|
img_size_min = min(img_size)
|
|
else:
|
|
img_size_min = img_size
|
|
aa_params = dict(
|
|
translate_const=int(img_size_min * 0.45),
|
|
img_mean=tuple([min(255, round(255 * x)) for x in mean]),
|
|
)
|
|
if interpolation and interpolation != 'random':
|
|
aa_params['interpolation'] = _pil_interp(interpolation)
|
|
if auto_augment.startswith('rand'):
|
|
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
|
|
elif auto_augment.startswith('augmix'):
|
|
aa_params['translate_pct'] = 0.3
|
|
secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)]
|
|
else:
|
|
secondary_tfl += [auto_augment_transform(auto_augment, aa_params)]
|
|
elif color_jitter is not None:
|
|
# color jitter is enabled when not using AA
|
|
if isinstance(color_jitter, (list, tuple)):
|
|
# color jitter should be a 3-tuple/list if spec brightness/contrast/saturation
|
|
# or 4 if also augmenting hue
|
|
assert len(color_jitter) in (3, 4)
|
|
else:
|
|
# if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
|
|
color_jitter = (float(color_jitter),) * 3
|
|
secondary_tfl += [transforms.ColorJitter(*color_jitter)]
|
|
|
|
final_tfl = []
|
|
if use_prefetcher:
|
|
# prefetcher and collate will handle tensor conversion and norm
|
|
final_tfl += [ToNumpy()]
|
|
else:
|
|
final_tfl += [
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(
|
|
mean=torch.tensor(mean),
|
|
std=torch.tensor(std))
|
|
]
|
|
if re_prob > 0.:
|
|
final_tfl.append(
|
|
RandomErasing(re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device='cpu'))
|
|
|
|
if separate:
|
|
return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl)
|
|
else:
|
|
return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)
|
|
|
|
|
|
def transforms_imagenet_eval(
|
|
img_size=224,
|
|
crop_pct=None,
|
|
interpolation='bilinear',
|
|
use_prefetcher=False,
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD):
|
|
crop_pct = crop_pct or DEFAULT_CROP_PCT
|
|
|
|
if isinstance(img_size, (tuple, list)):
|
|
assert len(img_size) == 2
|
|
if img_size[-1] == img_size[-2]:
|
|
# fall-back to older behaviour so Resize scales to shortest edge if target is square
|
|
scale_size = int(math.floor(img_size[0] / crop_pct))
|
|
else:
|
|
scale_size = tuple([int(x / crop_pct) for x in img_size])
|
|
else:
|
|
scale_size = int(math.floor(img_size / crop_pct))
|
|
|
|
tfl = [
|
|
transforms.Resize(scale_size, _pil_interp(interpolation)),
|
|
transforms.CenterCrop(img_size),
|
|
]
|
|
if use_prefetcher:
|
|
# prefetcher and collate will handle tensor conversion and norm
|
|
tfl += [ToNumpy()]
|
|
else:
|
|
tfl += [
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(
|
|
mean=torch.tensor(mean),
|
|
std=torch.tensor(std))
|
|
]
|
|
|
|
return transforms.Compose(tfl)
|
|
|
|
|
|
def create_transform(
|
|
input_size,
|
|
is_training=False,
|
|
use_prefetcher=False,
|
|
no_aug=False,
|
|
scale=None,
|
|
ratio=None,
|
|
hflip=0.5,
|
|
vflip=0.,
|
|
color_jitter=0.4,
|
|
auto_augment=None,
|
|
interpolation='bilinear',
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
std=IMAGENET_DEFAULT_STD,
|
|
re_prob=0.,
|
|
re_mode='const',
|
|
re_count=1,
|
|
re_num_splits=0,
|
|
crop_pct=None,
|
|
tf_preprocessing=False,
|
|
separate=False):
|
|
|
|
if isinstance(input_size, (tuple, list)):
|
|
img_size = input_size[-2:]
|
|
else:
|
|
img_size = input_size
|
|
|
|
if tf_preprocessing and use_prefetcher:
|
|
assert not separate, "Separate transforms not supported for TF preprocessing"
|
|
from timm.data.tf_preprocessing import TfPreprocessTransform
|
|
transform = TfPreprocessTransform(
|
|
is_training=is_training, size=img_size, interpolation=interpolation)
|
|
else:
|
|
if is_training and no_aug:
|
|
assert not separate, "Cannot perform split augmentation with no_aug"
|
|
transform = transforms_noaug_train(
|
|
img_size,
|
|
interpolation=interpolation,
|
|
use_prefetcher=use_prefetcher,
|
|
mean=mean,
|
|
std=std)
|
|
elif is_training:
|
|
transform = transforms_imagenet_train(
|
|
img_size,
|
|
scale=scale,
|
|
ratio=ratio,
|
|
hflip=hflip,
|
|
vflip=vflip,
|
|
color_jitter=color_jitter,
|
|
auto_augment=auto_augment,
|
|
interpolation=interpolation,
|
|
use_prefetcher=use_prefetcher,
|
|
mean=mean,
|
|
std=std,
|
|
re_prob=re_prob,
|
|
re_mode=re_mode,
|
|
re_count=re_count,
|
|
re_num_splits=re_num_splits,
|
|
separate=separate)
|
|
else:
|
|
assert not separate, "Separate transforms not supported for validation preprocessing"
|
|
transform = transforms_imagenet_eval(
|
|
img_size,
|
|
interpolation=interpolation,
|
|
use_prefetcher=use_prefetcher,
|
|
mean=mean,
|
|
std=std,
|
|
crop_pct=crop_pct)
|
|
|
|
return transform
|