271 lines
8.5 KiB
271 lines
8.5 KiB
# MobileNet v2
|
|
|
|
**MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers.
|
|
|
|
## How do I use this model on an image?
|
|
To load a pretrained model:
|
|
|
|
```python
|
|
import timm
|
|
model = timm.create_model('mobilenetv2_100', pretrained=True)
|
|
model.eval()
|
|
```
|
|
|
|
To load and preprocess the image:
|
|
```python
|
|
import urllib
|
|
from PIL import Image
|
|
from timm.data import resolve_data_config
|
|
from timm.data.transforms_factory import create_transform
|
|
|
|
config = resolve_data_config({}, model=model)
|
|
transform = create_transform(**config)
|
|
|
|
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
|
urllib.request.urlretrieve(url, filename)
|
|
img = Image.open(filename).convert('RGB')
|
|
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
|
|
```
|
|
|
|
To get the model predictions:
|
|
```python
|
|
import torch
|
|
with torch.no_grad():
|
|
out = model(tensor)
|
|
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
|
print(probabilities.shape)
|
|
# prints: torch.Size([1000])
|
|
```
|
|
|
|
To get the top-5 predictions class names:
|
|
```python
|
|
# Get imagenet class mappings
|
|
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
|
|
urllib.request.urlretrieve(url, filename)
|
|
with open("imagenet_classes.txt", "r") as f:
|
|
categories = [s.strip() for s in f.readlines()]
|
|
|
|
# Print top categories per image
|
|
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
|
for i in range(top5_prob.size(0)):
|
|
print(categories[top5_catid[i]], top5_prob[i].item())
|
|
# prints class names and probabilities like:
|
|
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
|
|
```
|
|
|
|
Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page.
|
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
|
|
|
|
## How do I finetune this model?
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
|
```python
|
|
model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
|
|
```
|
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
|
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
|
|
|
|
## How do I train this model?
|
|
|
|
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
|
|
|
|
## Citation
|
|
|
|
```BibTeX
|
|
@article{DBLP:journals/corr/abs-1801-04381,
|
|
author = {Mark Sandler and
|
|
Andrew G. Howard and
|
|
Menglong Zhu and
|
|
Andrey Zhmoginov and
|
|
Liang{-}Chieh Chen},
|
|
title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
|
|
Detection and Segmentation},
|
|
journal = {CoRR},
|
|
volume = {abs/1801.04381},
|
|
year = {2018},
|
|
url = {http://arxiv.org/abs/1801.04381},
|
|
archivePrefix = {arXiv},
|
|
eprint = {1801.04381},
|
|
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
|
|
biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
|
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
Type: model-index
|
|
Collections:
|
|
- Name: MobileNet V2
|
|
Paper:
|
|
Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks'
|
|
URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
|
Models:
|
|
- Name: mobilenetv2_100
|
|
In Collection: MobileNet V2
|
|
Metadata:
|
|
FLOPs: 401920448
|
|
Parameters: 3500000
|
|
File Size: 14202571
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Depthwise Separable Convolution
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Max Pooling
|
|
- ReLU6
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- RMSProp
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 16x GPUs
|
|
ID: mobilenetv2_100
|
|
LR: 0.045
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1536
|
|
Image Size: '224'
|
|
Weight Decay: 4.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 72.95%
|
|
Top 5 Accuracy: 91.0%
|
|
- Name: mobilenetv2_110d
|
|
In Collection: MobileNet V2
|
|
Metadata:
|
|
FLOPs: 573958832
|
|
Parameters: 4520000
|
|
File Size: 18316431
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Depthwise Separable Convolution
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Max Pooling
|
|
- ReLU6
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- RMSProp
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 16x GPUs
|
|
ID: mobilenetv2_110d
|
|
LR: 0.045
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1536
|
|
Image Size: '224'
|
|
Weight Decay: 4.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 75.05%
|
|
Top 5 Accuracy: 92.19%
|
|
- Name: mobilenetv2_120d
|
|
In Collection: MobileNet V2
|
|
Metadata:
|
|
FLOPs: 888510048
|
|
Parameters: 5830000
|
|
File Size: 23651121
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Depthwise Separable Convolution
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Max Pooling
|
|
- ReLU6
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- RMSProp
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 16x GPUs
|
|
ID: mobilenetv2_120d
|
|
LR: 0.045
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1536
|
|
Image Size: '224'
|
|
Weight Decay: 4.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 77.28%
|
|
Top 5 Accuracy: 93.51%
|
|
- Name: mobilenetv2_140
|
|
In Collection: MobileNet V2
|
|
Metadata:
|
|
FLOPs: 770196784
|
|
Parameters: 6110000
|
|
File Size: 24673555
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Convolution
|
|
- Depthwise Separable Convolution
|
|
- Dropout
|
|
- Inverted Residual Block
|
|
- Max Pooling
|
|
- ReLU6
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Techniques:
|
|
- RMSProp
|
|
- Weight Decay
|
|
Training Data:
|
|
- ImageNet
|
|
Training Resources: 16x GPUs
|
|
ID: mobilenetv2_140
|
|
LR: 0.045
|
|
Crop Pct: '0.875'
|
|
Momentum: 0.9
|
|
Batch Size: 1536
|
|
Image Size: '224'
|
|
Weight Decay: 4.0e-05
|
|
Interpolation: bicubic
|
|
RMSProp Decay: 0.9
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962
|
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 76.51%
|
|
Top 5 Accuracy: 93.0%
|
|
--> |