You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/models/skresnext.md

4.2 KiB

Summary

SK ResNeXt is a variant of a ResNeXt that employs a Selective Kernel unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNext are replaced by the proposed SK convolutions, enabling the network to choose appropriate receptive field sizes in an adaptive manner.

How do I use this model on an image?

To load a pretrained model:

import timm
model = timm.create_model('skresnext50_32x4d', pretrained=True)
model.eval()

To load and preprocess the image:

import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])

To get the top-5 predictions class names:

# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. skresnext50_32x4d. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

model = timm.create_model('skresnext50_32x4d', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)

To finetune on your own dataset, you have to write a training loop or adapt timm's training script to use your dataset.

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@misc{li2019selective,
      title={Selective Kernel Networks}, 
      author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang},
      year={2019},
      eprint={1903.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}