You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/models/noisy-student.md

517 lines
14 KiB

# Summary
**Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training
and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps:
1. train a teacher model on labeled images
2. use the teacher to generate pseudo labels on unlabeled images
3. train a student model on the combination of labeled images and pseudo labeled images.
The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student.
Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training.
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('tf_efficientnet_b3_ns', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b3_ns`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('tf_efficientnet_b3_ns', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{xie2020selftraining,
title={Self-training with Noisy Student improves ImageNet classification},
author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le},
year={2020},
eprint={1911.04252},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
Models:
- Name: tf_efficientnet_b3_ns
Metadata:
FLOPs: 2275247568
Epochs: 700
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 49385734
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b3_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.904'
Momentum: 0.9
Image Size: '300'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1457
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b1_ns
Metadata:
FLOPs: 883633200
Epochs: 700
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 31516408
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b1_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.882'
Momentum: 0.9
Image Size: '240'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1437
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_l2_ns
Metadata:
FLOPs: 611646113804
Epochs: 350
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 1925950424
Tasks:
- Image Classification
Training Time: 6 days
ID: tf_efficientnet_l2_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.96'
Momentum: 0.9
Image Size: '800'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1520
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b0_ns
Metadata:
FLOPs: 488688572
Epochs: 700
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 21386709
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b0_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1427
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b2_ns
Metadata:
FLOPs: 1234321170
Epochs: 700
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 36801803
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b2_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.89'
Momentum: 0.9
Image Size: '260'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1447
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b5_ns
Metadata:
FLOPs: 13176501888
Epochs: 350
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 122404944
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b5_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.934'
Momentum: 0.9
Image Size: '456'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1477
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b6_ns
Metadata:
FLOPs: 24180518488
Epochs: 350
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 173239537
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b6_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.942'
Momentum: 0.9
Image Size: '528'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1487
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b4_ns
Metadata:
FLOPs: 5749638672
Epochs: 700
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 77995057
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b4_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.922'
Momentum: 0.9
Image Size: '380'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1467
Config: ''
In Collection: Noisy Student
- Name: tf_efficientnet_b7_ns
Metadata:
FLOPs: 48205304880
Epochs: 350
Batch Size: 2048
Training Data:
- ImageNet
- JFT-300M
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Resources: Cloud TPU v3 Pod
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
File Size: 266853140
Tasks:
- Image Classification
Training Time: ''
ID: tf_efficientnet_b7_ns
LR: 0.128
Dropout: 0.5
Crop Pct: '0.949'
Momentum: 0.9
Image Size: '600'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1498
Config: ''
In Collection: Noisy Student
Collections:
- Name: Noisy Student
Paper:
title: Self-training with Noisy Student improves ImageNet classification
url: https://paperswithcode.com//paper/self-training-with-noisy-student-improves
type: model-index
Type: model-index
-->