You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/models/.templates/models/legacy-se-resnet.md

258 lines
6.8 KiB

# (Legacy) SE-ResNet
**SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{hu2019squeezeandexcitation,
title={Squeeze-and-Excitation Networks},
author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu},
year={2019},
eprint={1709.01507},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: Legacy SE ResNet
Paper:
Title: Squeeze-and-Excitation Networks
URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks
Models:
- Name: legacy_seresnet101
In Collection: Legacy SE ResNet
Metadata:
FLOPs: 9762614000
Parameters: 49330000
File Size: 197822624
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA Titan X GPUs
ID: legacy_seresnet101
LR: 0.6
Epochs: 100
Layers: 101
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L426
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.38%
Top 5 Accuracy: 94.26%
- Name: legacy_seresnet152
In Collection: Legacy SE ResNet
Metadata:
FLOPs: 14553578160
Parameters: 66819999
File Size: 268033864
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA Titan X GPUs
ID: legacy_seresnet152
LR: 0.6
Epochs: 100
Layers: 152
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L433
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.67%
Top 5 Accuracy: 94.38%
- Name: legacy_seresnet18
In Collection: Legacy SE ResNet
Metadata:
FLOPs: 2328876024
Parameters: 11780000
File Size: 47175663
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA Titan X GPUs
ID: legacy_seresnet18
LR: 0.6
Epochs: 100
Layers: 18
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L405
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 71.74%
Top 5 Accuracy: 90.34%
- Name: legacy_seresnet34
In Collection: Legacy SE ResNet
Metadata:
FLOPs: 4706201004
Parameters: 21960000
File Size: 87958697
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA Titan X GPUs
ID: legacy_seresnet34
LR: 0.6
Epochs: 100
Layers: 34
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 1024
Image Size: '224'
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L412
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 74.79%
Top 5 Accuracy: 92.13%
- Name: legacy_seresnet50
In Collection: Legacy SE ResNet
Metadata:
FLOPs: 4974351024
Parameters: 28090000
File Size: 112611220
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 8x NVIDIA Titan X GPUs
ID: legacy_seresnet50
LR: 0.6
Epochs: 100
Layers: 50
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Image Size: '224'
Interpolation: bilinear
Minibatch Size: 1024
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L419
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.64%
Top 5 Accuracy: 93.74%
-->