You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/changes.md

4.4 KiB

June 11, 2020

Bunch of changes:

  • DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions
  • VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1
  • Activation factory added along with new activations:
    • select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export)
    • hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish
    • context mgr for setting exportable/scriptable/no_jit states
  • Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface
  • Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this
  • Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call
  • Prep for 0.1.28 pip release

May 12, 2020

May 3, 2020

May 1, 2020

  • Merged a number of execellent contributions in the ResNet model family over the past month
  • 200 pretrained models in total now with updated results csv in results folder

April 5, 2020

  • Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
    • 3.5M param MobileNet-V2 100 @ 73%
    • 4.5M param MobileNet-V2 110d @ 75%
    • 6.1M param MobileNet-V2 140 @ 76.5%
    • 5.8M param MobileNet-V2 120d @ 77.3%

March 18, 2020

  • Add EfficientNet-Lite models w/ weights ported from Tensorflow TPU
  • Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by Andrew Lavin (see Training section for hparams)

Feb 29, 2020

  • New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1
  • IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models
    • overall results similar to a bit better training from scratch on a few smaller models tried
    • performance early in training seems consistently improved but less difference by end
    • set fix_group_fanout=False in _init_weight_goog fn if you need to reproducte past behaviour
  • Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training

Feb 18, 2020

  • Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268):
    • Move layer/module impl into layers subfolder/module of models and organize in a more granular fashion
    • ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks
    • Add Selective Kernel Nets on top of ResNet base, pretrained weights
      • skresnet18 - 73% top-1
      • skresnet34 - 76.9% top-1
      • skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1
    • ECA and CECA (circular padding) attention layer contributed by Chris Ha
    • CBAM attention experiment (not the best results so far, may remove)
    • Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the .se position for all ResNets
    • Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants
  • Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights

Feb 12, 2020

  • Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from Tensorflow TPU