You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/wide-resnet.md

2.4 KiB

Summary

Wide Residual Networks are a variant on ResNets where we decrease depth and increase the width of residual networks. This is achieved through the use of wide residual blocks.

{% include 'code_snippets.md' %}

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@article{DBLP:journals/corr/ZagoruykoK16,
  author    = {Sergey Zagoruyko and
               Nikos Komodakis},
  title     = {Wide Residual Networks},
  journal   = {CoRR},
  volume    = {abs/1605.07146},
  year      = {2016},
  url       = {http://arxiv.org/abs/1605.07146},
  archivePrefix = {arXiv},
  eprint    = {1605.07146},
  timestamp = {Mon, 13 Aug 2018 16:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/ZagoruykoK16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}