You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/ssl-resnet.md

3.5 KiB

Summary

Residual Networks, or ResNets, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack residual blocks ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks.

The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification.

Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.

{% include 'code_snippets.md' %}

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@article{DBLP:journals/corr/abs-1905-00546,
  author    = {I. Zeki Yalniz and
               Herv{\'{e}} J{\'{e}}gou and
               Kan Chen and
               Manohar Paluri and
               Dhruv Mahajan},
  title     = {Billion-scale semi-supervised learning for image classification},
  journal   = {CoRR},
  volume    = {abs/1905.00546},
  year      = {2019},
  url       = {http://arxiv.org/abs/1905.00546},
  archivePrefix = {arXiv},
  eprint    = {1905.00546},
  timestamp = {Mon, 28 Sep 2020 08:19:37 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}