You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3.4 KiB
3.4 KiB
Summary
MobileNetV3 is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a hard swish activation and squeeze-and-excitation modules in the MBConv blocks.
{% include 'code_snippets.md' %}
How do I train this model?
You can follow the timm recipe scripts for training a new model afresh.
Citation
@article{DBLP:journals/corr/abs-1905-02244,
author = {Andrew Howard and
Mark Sandler and
Grace Chu and
Liang{-}Chieh Chen and
Bo Chen and
Mingxing Tan and
Weijun Wang and
Yukun Zhu and
Ruoming Pang and
Vijay Vasudevan and
Quoc V. Le and
Hartwig Adam},
title = {Searching for MobileNetV3},
journal = {CoRR},
volume = {abs/1905.02244},
year = {2019},
url = {http://arxiv.org/abs/1905.02244},
archivePrefix = {arXiv},
eprint = {1905.02244},
timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}