You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2.1 KiB
2.1 KiB
Summary
FBNet is a type of convolutional neural architectures discovered through DNAS neural architecture search. It utilises a basic type of image model block inspired by MobileNetv2 that utilises depthwise convolutions and an inverted residual structure (see components).
The principal building block is the FBNet Block.
{% include 'code_snippets.md' %}
How do I train this model?
You can follow the timm recipe scripts for training a new model afresh.
Citation
@misc{wu2019fbnet,
title={FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search},
author={Bichen Wu and Xiaoliang Dai and Peizhao Zhang and Yanghan Wang and Fei Sun and Yiming Wu and Yuandong Tian and Peter Vajda and Yangqing Jia and Kurt Keutzer},
year={2019},
eprint={1812.03443},
archivePrefix={arXiv},
primaryClass={cs.CV}
}