You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/.templates/models/ecaresnet.md

201 lines
5.4 KiB

# Summary
An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{wang2020ecanet,
title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks},
author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu},
year={2020},
eprint={1910.03151},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: ecaresnet101d
Metadata:
FLOPs: 10377193728
Epochs: 100
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 4x RTX 2080Ti GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 178815067
Tasks:
- Image Classification
ID: ecaresnet101d
LR: 0.1
Layers: 101
Crop Pct: '0.875'
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1087
In Collection: ECAResNet
- Name: ecaresnet101d_pruned
Metadata:
FLOPs: 4463972081
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: ''
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 99852736
Tasks:
- Image Classification
Training Time: ''
ID: ecaresnet101d_pruned
Layers: 101
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1097
Config: ''
In Collection: ECAResNet
- Name: ecaresnet50d_pruned
Metadata:
FLOPs: 3250730657
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 79990436
Tasks:
- Image Classification
ID: ecaresnet50d_pruned
Layers: 50
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1055
In Collection: ECAResNet
- Name: ecaresnet50d
Metadata:
FLOPs: 5591090432
Epochs: 100
Batch Size: 256
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 4x RTX 2080Ti GPUs
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 102579290
Tasks:
- Image Classification
ID: ecaresnet50d
LR: 0.1
Layers: 50
Crop Pct: '0.875'
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1045
In Collection: ECAResNet
- Name: ecaresnetlight
Metadata:
FLOPs: 5276118784
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- 1x1 Convolution
- Batch Normalization
- Bottleneck Residual Block
- Convolution
- Efficient Channel Attention
- Global Average Pooling
- Max Pooling
- ReLU
- Residual Block
- Residual Connection
- Softmax
- Squeeze-and-Excitation Block
File Size: 120956612
Tasks:
- Image Classification
ID: ecaresnetlight
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1077
In Collection: ECAResNet
Collections:
- Name: ECAResNet
Paper:
title: 'ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks'
url: https://papperswithcode.com//paper/eca-net-efficient-channel-attention-for-deep
type: model-index
Type: model-index
-->