You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/layers
Ross Wightman 110a7c4982
AdaptiveAvgPool2d -> mean((2,3)) for all SE/attn layers to avoid NaN with AMP + channels_last layout. See https://github.com/pytorch/pytorch/issues/43992
4 years ago
..
__init__.py More uniform treatment of classifiers across all models, reduce code duplication. 4 years ago
activations.py
activations_jit.py
activations_me.py
adaptive_avgmax_pool.py More uniform treatment of classifiers across all models, reduce code duplication. 4 years ago
anti_aliasing.py
blur_pool.py
cbam.py AdaptiveAvgPool2d -> mean((2,3)) for all SE/attn layers to avoid NaN with AMP + channels_last layout. See https://github.com/pytorch/pytorch/issues/43992 4 years ago
classifier.py More uniform treatment of classifiers across all models, reduce code duplication. 4 years ago
cond_conv2d.py
config.py
conv2d_same.py
conv_bn_act.py
create_act.py
create_attn.py
create_conv2d.py
create_norm_act.py
drop.py
eca.py AdaptiveAvgPool2d -> mean((2,3)) for all SE/attn layers to avoid NaN with AMP + channels_last layout. See https://github.com/pytorch/pytorch/issues/43992 4 years ago
evo_norm.py Fix a silly bug in Sample version of EvoNorm missing x* part of swish, update EvoNormBatch to accumulated unbiased variance. 4 years ago
helpers.py
inplace_abn.py
median_pool.py
mixed_conv2d.py
norm_act.py
padding.py
pool2d_same.py
se.py AdaptiveAvgPool2d -> mean((2,3)) for all SE/attn layers to avoid NaN with AMP + channels_last layout. See https://github.com/pytorch/pytorch/issues/43992 4 years ago
selective_kernel.py AdaptiveAvgPool2d -> mean((2,3)) for all SE/attn layers to avoid NaN with AMP + channels_last layout. See https://github.com/pytorch/pytorch/issues/43992 4 years ago
separable_conv.py
space_to_depth.py
split_attn.py
split_batchnorm.py
test_time_pool.py
weight_init.py