You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3.1 KiB
3.1 KiB
# Ensemble Adversarial Inception ResNet v2
Inception-ResNet-v2 is a convolutional neural architecture that builds on the Inception family of architectures but incorporates residual connections (replacing the filter concatenation stage of the Inception architecture).
This particular model was trained for study of adversarial examples (adversarial training).
The weights from this model were ported from Tensorflow/Models.
{% include 'code_snippets.md' %}
How do I train this model?
You can follow the timm recipe scripts for training a new model afresh.
Citation
@article{DBLP:journals/corr/abs-1804-00097,
author = {Alexey Kurakin and
Ian J. Goodfellow and
Samy Bengio and
Yinpeng Dong and
Fangzhou Liao and
Ming Liang and
Tianyu Pang and
Jun Zhu and
Xiaolin Hu and
Cihang Xie and
Jianyu Wang and
Zhishuai Zhang and
Zhou Ren and
Alan L. Yuille and
Sangxia Huang and
Yao Zhao and
Yuzhe Zhao and
Zhonglin Han and
Junjiajia Long and
Yerkebulan Berdibekov and
Takuya Akiba and
Seiya Tokui and
Motoki Abe},
title = {Adversarial Attacks and Defences Competition},
journal = {CoRR},
volume = {abs/1804.00097},
year = {2018},
url = {http://arxiv.org/abs/1804.00097},
archivePrefix = {arXiv},
eprint = {1804.00097},
timestamp = {Thu, 31 Oct 2019 16:31:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}