You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/modelindex/models/dpn.md

270 lines
7.7 KiB

# Summary
A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures.
The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('dpn68', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `dpn68`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('dpn68', pretrained=True).reset_classifier(NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{chen2017dual,
title={Dual Path Networks},
author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
year={2017},
eprint={1707.01629},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Models:
- Name: dpn68
Metadata:
FLOPs: 2990567880
Batch Size: 1280
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 50761994
Tasks:
- Image Classification
ID: dpn68
LR: 0.316
Layers: 68
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270
In Collection: DPN
- Name: dpn68b
Metadata:
FLOPs: 2990567880
Batch Size: 1280
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 50781025
Tasks:
- Image Classification
ID: dpn68b
LR: 0.316
Layers: 68
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278
In Collection: DPN
- Name: dpn92
Metadata:
FLOPs: 8357659624
Batch Size: 1280
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 151248422
Tasks:
- Image Classification
ID: dpn92
LR: 0.316
Layers: 92
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286
In Collection: DPN
- Name: dpn131
Metadata:
FLOPs: 20586274792
Batch Size: 960
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 318016207
Tasks:
- Image Classification
ID: dpn131
LR: 0.316
Layers: 131
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302
In Collection: DPN
- Name: dpn107
Metadata:
FLOPs: 23524280296
Batch Size: 1280
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 348612331
Tasks:
- Image Classification
ID: dpn107
LR: 0.316
Layers: 107
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310
In Collection: DPN
- Name: dpn98
Metadata:
FLOPs: 15003675112
Batch Size: 1280
Training Data:
- ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 40x K80 GPUs
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
File Size: 247021307
Tasks:
- Image Classification
ID: dpn98
LR: 0.4
Layers: 98
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294
In Collection: DPN
Collections:
- Name: DPN
Paper:
title: Dual Path Networks
url: https://papperswithcode.com//paper/dual-path-networks
type: model-index
Type: model-index
-->