You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/docs/models/.templates/models/skresnext.md

71 lines
2.1 KiB

# SK-ResNeXt
**SK ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNext are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner.
{% include 'code_snippets.md' %}
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{li2019selective,
title={Selective Kernel Networks},
author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang},
year={2019},
eprint={1903.06586},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: SKResNeXt
Paper:
Title: Selective Kernel Networks
URL: https://paperswithcode.com/paper/selective-kernel-networks
Models:
- Name: skresnext50_32x4d
In Collection: SKResNeXt
Metadata:
FLOPs: 5739845824
Parameters: 27480000
File Size: 110340975
Architecture:
- Convolution
- Dense Connections
- Global Average Pooling
- Grouped Convolution
- Max Pooling
- Residual Connection
- Selective Kernel
- Softmax
Tasks:
- Image Classification
Training Data:
- ImageNet
Training Resources: 8x GPUs
ID: skresnext50_32x4d
LR: 0.1
Epochs: 100
Layers: 50
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.0001
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L210
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.15%
Top 5 Accuracy: 94.64%
-->