You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/swin_transformer_v2.py

756 lines
31 KiB

""" Swin Transformer V2
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
- https://arxiv.org/abs/2111.09883
Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# --------------------------------------------------------
# Swin Transformer V2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import math
from typing import Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._registry import register_model
__all__ = ['SwinTransformerV2'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'swinv2_tiny_window8_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth',
input_size=(3, 256, 256)
),
'swinv2_tiny_window16_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth',
input_size=(3, 256, 256)
),
'swinv2_small_window8_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth',
input_size=(3, 256, 256)
),
'swinv2_small_window16_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth',
input_size=(3, 256, 256)
),
'swinv2_base_window8_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth',
input_size=(3, 256, 256)
),
'swinv2_base_window16_256': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth',
input_size=(3, 256, 256)
),
'swinv2_base_window12_192_22k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth',
num_classes=21841, input_size=(3, 192, 192)
),
'swinv2_base_window12to16_192to256_22kft1k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth',
input_size=(3, 256, 256)
),
'swinv2_base_window12to24_192to384_22kft1k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'swinv2_large_window12_192_22k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth',
num_classes=21841, input_size=(3, 192, 192)
),
'swinv2_large_window12to16_192to256_22kft1k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth',
input_size=(3, 256, 256)
),
'swinv2_large_window12to24_192to384_22kft1k': _cfg(
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
}
def window_partition(x, window_size: Tuple[int, int]):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
"""
Args:
windows: (num_windows * B, window_size[0], window_size[1], C)
window_size (Tuple[int, int]): Window size
img_size (Tuple[int, int]): Image size
Returns:
x: (B, H, W, C)
"""
H, W = img_size
C = windows.shape[-1]
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(
self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
pretrained_window_size=[0, 0]):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False)
)
# get relative_coords_table
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(torch.meshgrid([
relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / math.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.register_buffer('k_bias', torch.zeros(dim), persistent=False)
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask: Optional[torch.Tensor] = None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
# cosine attention
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pretrained_window_size (int): Window size in pretraining.
"""
def __init__(
self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
super().__init__()
self.dim = dim
self.input_resolution = to_2tuple(input_resolution)
self.num_heads = num_heads
ws, ss = self._calc_window_shift(window_size, shift_size)
self.window_size: Tuple[int, int] = ws
self.shift_size: Tuple[int, int] = ss
self.window_area = self.window_size[0] * self.window_size[1]
self.mlp_ratio = mlp_ratio
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
pretrained_window_size=to_2tuple(pretrained_window_size))
self.norm1 = norm_layer(dim)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if any(self.shift_size):
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
cnt = 0
for h in (
slice(0, -self.window_size[0]),
slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None)):
for w in (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None)):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_area)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
target_window_size = to_2tuple(target_window_size)
target_shift_size = to_2tuple(target_shift_size)
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
return tuple(window_size), tuple(shift_size)
def _attn(self, x):
H, W = self.input_resolution
B, L, C = x.shape
_assert(L == H * W, "input feature has wrong size")
x = x.view(B, H, W, C)
# cyclic shift
has_shift = any(self.shift_size)
if has_shift:
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution) # B H' W' C
# reverse cyclic shift
if has_shift:
x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
return x
def forward(self, x):
x = x + self.drop_path1(self.norm1(self._attn(x)))
x = x + self.drop_path2(self.norm2(self.mlp(x)))
return x
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
_assert(L == H * W, "input feature has wrong size")
_assert(H % 2 == 0, f"x size ({H}*{W}) are not even.")
_assert(W % 2 == 0, f"x size ({H}*{W}) are not even.")
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.reduction(x)
x = self.norm(x)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
pretrained_window_size (int): Local window size in pre-training.
"""
def __init__(
self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
norm_layer=nn.LayerNorm, downsample=None, pretrained_window_size=0):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.grad_checkpointing = False
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(
dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
pretrained_window_size=pretrained_window_size)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = nn.Identity()
def forward(self, x):
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
x = self.downsample(x)
return x
def _init_respostnorm(self):
for blk in self.blocks:
nn.init.constant_(blk.norm1.bias, 0)
nn.init.constant_(blk.norm1.weight, 0)
nn.init.constant_(blk.norm2.bias, 0)
nn.init.constant_(blk.norm2.weight, 0)
class SwinTransformerV2(nn.Module):
r""" Swin Transformer V2
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
- https://arxiv.org/abs/2111.09883
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer.
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, global_pool='avg',
embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
pretrained_window_sizes=(0, 0, 0, 0), **kwargs):
super().__init__()
self.num_classes = num_classes
assert global_pool in ('', 'avg')
self.global_pool = global_pool
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
# absolute position embedding
if ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
else:
self.absolute_pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2 ** i_layer),
input_resolution=(
self.patch_embed.grid_size[0] // (2 ** i_layer),
self.patch_embed.grid_size[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
pretrained_window_size=pretrained_window_sizes[i_layer]
)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
for bly in self.layers:
bly._init_respostnorm()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
nod = {'absolute_pos_embed'}
for n, m in self.named_modules():
if any([kw in n for kw in ("cpb_mlp", "logit_scale", 'relative_position_bias_table')]):
nod.add(n)
return nod
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^absolute_pos_embed|patch_embed', # stem and embed
blocks=r'^layers\.(\d+)' if coarse else [
(r'^layers\.(\d+).downsample', (0,)),
(r'^layers\.(\d+)\.\w+\.(\d+)', None),
(r'^norm', (99999,)),
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for l in self.layers:
l.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.absolute_pos_embed is not None:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
x = x.mean(dim=1)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model):
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
for k, v in state_dict.items():
if any([n in k for n in ('relative_position_index', 'relative_coords_table')]):
continue # skip buffers that should not be persistent
out_dict[k] = v
return out_dict
def _create_swin_transformer_v2(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
SwinTransformerV2, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def swinv2_tiny_window16_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), **kwargs)
return _create_swin_transformer_v2('swinv2_tiny_window16_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_tiny_window8_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), **kwargs)
return _create_swin_transformer_v2('swinv2_tiny_window8_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_small_window16_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), **kwargs)
return _create_swin_transformer_v2('swinv2_small_window16_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_small_window8_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), **kwargs)
return _create_swin_transformer_v2('swinv2_small_window8_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_base_window16_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs)
return _create_swin_transformer_v2('swinv2_base_window16_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_base_window8_256(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs)
return _create_swin_transformer_v2('swinv2_base_window8_256', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_base_window12_192_22k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs)
return _create_swin_transformer_v2('swinv2_base_window12_192_22k', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_base_window12to16_192to256_22kft1k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
pretrained_window_sizes=(12, 12, 12, 6), **kwargs)
return _create_swin_transformer_v2(
'swinv2_base_window12to16_192to256_22kft1k', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_base_window12to24_192to384_22kft1k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
pretrained_window_sizes=(12, 12, 12, 6), **kwargs)
return _create_swin_transformer_v2(
'swinv2_base_window12to24_192to384_22kft1k', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_large_window12_192_22k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs)
return _create_swin_transformer_v2('swinv2_large_window12_192_22k', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_large_window12to16_192to256_22kft1k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
pretrained_window_sizes=(12, 12, 12, 6), **kwargs)
return _create_swin_transformer_v2(
'swinv2_large_window12to16_192to256_22kft1k', pretrained=pretrained, **model_kwargs)
@register_model
def swinv2_large_window12to24_192to384_22kft1k(pretrained=False, **kwargs):
"""
"""
model_kwargs = dict(
window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
pretrained_window_sizes=(12, 12, 12, 6), **kwargs)
return _create_swin_transformer_v2(
'swinv2_large_window12to24_192to384_22kft1k', pretrained=pretrained, **model_kwargs)