""" Swin Transformer V2 A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - https://arxiv.org/abs/2111.09883 Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman """ # -------------------------------------------------------- # Swin Transformer V2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import math from typing import Tuple, Optional import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert from ._builder import build_model_with_cfg from ._features_fx import register_notrace_function from ._registry import register_model __all__ = ['SwinTransformerV2'] # model_registry will add each entrypoint fn to this def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { 'swinv2_tiny_window8_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth', input_size=(3, 256, 256) ), 'swinv2_tiny_window16_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth', input_size=(3, 256, 256) ), 'swinv2_small_window8_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth', input_size=(3, 256, 256) ), 'swinv2_small_window16_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth', input_size=(3, 256, 256) ), 'swinv2_base_window8_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth', input_size=(3, 256, 256) ), 'swinv2_base_window16_256': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth', input_size=(3, 256, 256) ), 'swinv2_base_window12_192_22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192) ), 'swinv2_base_window12to16_192to256_22kft1k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth', input_size=(3, 256, 256) ), 'swinv2_base_window12to24_192to384_22kft1k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), crop_pct=1.0, ), 'swinv2_large_window12_192_22k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth', num_classes=21841, input_size=(3, 192, 192) ), 'swinv2_large_window12to16_192to256_22kft1k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth', input_size=(3, 256, 256) ), 'swinv2_large_window12to24_192to384_22kft1k': _cfg( url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth', input_size=(3, 384, 384), crop_pct=1.0, ), } def window_partition(x, window_size: Tuple[int, int]): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): """ Args: windows: (num_windows * B, window_size[0], window_size[1], C) window_size (Tuple[int, int]): Window size img_size (Tuple[int, int]): Image size Returns: x: (B, H, W, C) """ H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., pretrained_window_size=[0, 0]): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential( nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False) ) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = torch.stack(torch.meshgrid([ relative_coords_h, relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) else: relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( torch.abs(relative_coords_table) + 1.0) / math.log2(8) self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index, persistent=False) self.qkv = nn.Linear(dim, dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(dim)) self.register_buffer('k_bias', torch.zeros(dim), persistent=False) self.v_bias = nn.Parameter(torch.zeros(dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask: Optional[torch.Tensor] = None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # cosine attention attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp() attn = attn * logit_scale relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_window_size (int): Window size in pretraining. """ def __init__( self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): super().__init__() self.dim = dim self.input_resolution = to_2tuple(input_resolution) self.num_heads = num_heads ws, ss = self._calc_window_shift(window_size, shift_size) self.window_size: Tuple[int, int] = ws self.shift_size: Tuple[int, int] = ss self.window_area = self.window_size[0] * self.window_size[1] self.mlp_ratio = mlp_ratio self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=to_2tuple(pretrained_window_size)) self.norm1 = norm_layer(dim) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.norm2 = norm_layer(dim) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() if any(self.shift_size): # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 cnt = 0 for h in ( slice(0, -self.window_size[0]), slice(-self.window_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None)): for w in ( slice(0, -self.window_size[1]), slice(-self.window_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None)): img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_area) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]: target_window_size = to_2tuple(target_window_size) target_shift_size = to_2tuple(target_shift_size) window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] return tuple(window_size), tuple(shift_size) def _attn(self, x): H, W = self.input_resolution B, L, C = x.shape _assert(L == H * W, "input feature has wrong size") x = x.view(B, H, W, C) # cyclic shift has_shift = any(self.shift_size) if has_shift: shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution) # B H' W' C # reverse cyclic shift if has_shift: x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) return x def forward(self, x): x = x + self.drop_path1(self.norm1(self._attn(x))) x = x + self.drop_path2(self.norm2(self.mlp(x))) return x class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(2 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape _assert(L == H * W, "input feature has wrong size") _assert(H % 2 == 0, f"x size ({H}*{W}) are not even.") _assert(W % 2 == 0, f"x size ({H}*{W}) are not even.") x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.reduction(x) x = self.norm(x) return x class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None pretrained_window_size (int): Local window size in pre-training. """ def __init__( self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, pretrained_window_size=0): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.grad_checkpointing = False # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, pretrained_window_size=pretrained_window_size) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = nn.Identity() def forward(self, x): for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.downsample(x) return x def _init_respostnorm(self): for blk in self.blocks: nn.init.constant_(blk.norm1.bias, 0) nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) class SwinTransformerV2(nn.Module): r""" Swin Transformer V2 A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - https://arxiv.org/abs/2111.09883 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. """ def __init__( self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, global_pool='avg', embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, pretrained_window_sizes=(0, 0, 0, 0), **kwargs): super().__init__() self.num_classes = num_classes assert global_pool in ('', 'avg') self.global_pool = global_pool self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches # absolute position embedding if ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) else: self.absolute_pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), input_resolution=( self.patch_embed.grid_size[0] // (2 ** i_layer), self.patch_embed.grid_size[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, pretrained_window_size=pretrained_window_sizes[i_layer] ) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) for bly in self.layers: bly._init_respostnorm() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): nod = {'absolute_pos_embed'} for n, m in self.named_modules(): if any([kw in n for kw in ("cpb_mlp", "logit_scale", 'relative_position_bias_table')]): nod.add(n) return nod @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^absolute_pos_embed|patch_embed', # stem and embed blocks=r'^layers\.(\d+)' if coarse else [ (r'^layers\.(\d+).downsample', (0,)), (r'^layers\.(\d+)\.\w+\.(\d+)', None), (r'^norm', (99999,)), ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for l in self.layers: l.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) if self.absolute_pos_embed is not None: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=1) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] for k, v in state_dict.items(): if any([n in k for n in ('relative_position_index', 'relative_coords_table')]): continue # skip buffers that should not be persistent out_dict[k] = v return out_dict def _create_swin_transformer_v2(variant, pretrained=False, **kwargs): model = build_model_with_cfg( SwinTransformerV2, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model @register_model def swinv2_tiny_window16_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), **kwargs) return _create_swin_transformer_v2('swinv2_tiny_window16_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_tiny_window8_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), **kwargs) return _create_swin_transformer_v2('swinv2_tiny_window8_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_small_window16_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), **kwargs) return _create_swin_transformer_v2('swinv2_small_window16_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_small_window8_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), **kwargs) return _create_swin_transformer_v2('swinv2_small_window8_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_base_window16_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) return _create_swin_transformer_v2('swinv2_base_window16_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_base_window8_256(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) return _create_swin_transformer_v2('swinv2_base_window8_256', pretrained=pretrained, **model_kwargs) @register_model def swinv2_base_window12_192_22k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) return _create_swin_transformer_v2('swinv2_base_window12_192_22k', pretrained=pretrained, **model_kwargs) @register_model def swinv2_base_window12to16_192to256_22kft1k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6), **kwargs) return _create_swin_transformer_v2( 'swinv2_base_window12to16_192to256_22kft1k', pretrained=pretrained, **model_kwargs) @register_model def swinv2_base_window12to24_192to384_22kft1k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), pretrained_window_sizes=(12, 12, 12, 6), **kwargs) return _create_swin_transformer_v2( 'swinv2_base_window12to24_192to384_22kft1k', pretrained=pretrained, **model_kwargs) @register_model def swinv2_large_window12_192_22k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs) return _create_swin_transformer_v2('swinv2_large_window12_192_22k', pretrained=pretrained, **model_kwargs) @register_model def swinv2_large_window12to16_192to256_22kft1k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6), **kwargs) return _create_swin_transformer_v2( 'swinv2_large_window12to16_192to256_22kft1k', pretrained=pretrained, **model_kwargs) @register_model def swinv2_large_window12to24_192to384_22kft1k(pretrained=False, **kwargs): """ """ model_kwargs = dict( window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), pretrained_window_sizes=(12, 12, 12, 6), **kwargs) return _create_swin_transformer_v2( 'swinv2_large_window12to24_192to384_22kft1k', pretrained=pretrained, **model_kwargs)