* All models updated with revised foward_features / forward_head interface
* Vision transformer and MLP based models consistently output sequence from forward_features (pooling or token selection considered part of 'head')
* WIP param grouping interface to allow consistent grouping of parameters for layer-wise decay across all model types
* Add gradient checkpointing support to a significant % of models, especially popular architectures
* Formatting and interface consistency improvements across models
* layer-wise LR decay impl part of optimizer factory w/ scale support in scheduler
* Poolformer and Volo architectures added
* Add parser/dataset factory methods for more flexible dataset & parser creation
* Add dataset parser that wraps TFDS image classification datasets
* Tweak num_classes handling bug for 21k models
* Add initial deit models so they can be benchmarked in next csv results runs
* refactor 'same' convolution and add helper to use MixedConv2d when needed
* improve performance of 'same' padding for cases that can be handled statically
* add support for extra exp, pw, and dw kernel specs with grouping support to decoder/string defs for MixNet
* shuffle some args for a bit more consistency, a little less clutter overall in gen_efficientnet.py
* reorganize train args
* allow resolve_data_config to be used with dict args, not just arparse
* stop incrementing epoch before save, more consistent naming vs csv, etc
* update resume and start epoch handling to match above
* stop auto-incrementing epoch in scheduler