__input()__ is a builtin in Python so it is not a suitable variable name. Also, initialize the variable before referring to it.
[flake8](http://flake8.pycqa.org) testing of https://github.com/rwightman/pytorch-image-models on Python 3.7.1
$ __flake8 . --count --select=E9,F63,F72,F82 --show-source --statistics__
```
./data/loader.py:47:23: F823 local variable 'input' defined as a builtin referenced before assignment
yield input, target
^
1 F823 local variable 'input' defined as a builtin referenced before assignment
1
```
__E901,E999,F821,F822,F823__ are the "_showstopper_" [flake8](http://flake8.pycqa.org) issues that can halt the runtime with a SyntaxError, NameError, etc. These 5 are different from most other flake8 issues which are merely "style violations" -- useful for readability but they do not effect runtime safety.
* F821: undefined name `name`
* F822: undefined name `name` in `__all__`
* F823: local variable name referenced before assignment
* E901: SyntaxError or IndentationError
* E999: SyntaxError -- failed to compile a file into an Abstract Syntax Tree
* B0-B3 weights ported from TF with close to paper accuracy
* Renamed gen_mobilenet to gen_efficientnet since scaling params go well beyond 'mobile' specific
* Add Tensorflow preprocessing option for closer images to source repo
* Do mixup in custom collate fn if prefetcher enabled, reduces performance impact
* Move mixup code to own file
* Add arg to disable prefetcher
* Fix no cuda transfer when prefetcher off
* Random erasing when prefetcher off wasn't changed to match new args, fixed
* Default random erasing to off (prob = 0.) for train
* factor out data related constants to own file
* move data related config helpers to own file
* add a variant of RandomResizeCrop that randomizes interpolation method
* remove old Numpy version of RandomErasing
* cleanup torch version of RandomErasing and use it in either GPU loader batch mode or single image cpu Transform
* create one resolve fn to pull together model defaults + cmd line args
* update attribution comments in some models
* test update train/validation/inference scripts
* All models have 'default_cfgs' dict
* load/resume/pretrained helpers factored out
* pretrained load operates on state_dict based on default_cfg
* test all models in validate
* schedule, optim factor factored out
* test time pool wrapper applied based on default_cfg
* Move 'test time pool' to Module that can be used by any model, remove from DPN
* Remove ResNext model file and combine with ResNet
* Remove fbresnet200 as it was an old conversion and pretrained performance not worth param count
* Cleanup adaptive avgmax pooling and add back conctat variant
* Factor out checkpoint load fn