|
|
@ -82,6 +82,7 @@ default_cfgs = {
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth'
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth'
|
|
|
|
),
|
|
|
|
),
|
|
|
|
'coatnet_2_rw_224': _cfg(url=''),
|
|
|
|
'coatnet_2_rw_224': _cfg(url=''),
|
|
|
|
|
|
|
|
'coatnet_3_rw_224': _cfg(url=''),
|
|
|
|
|
|
|
|
|
|
|
|
# Highly experimental configs
|
|
|
|
# Highly experimental configs
|
|
|
|
'coatnet_bn_0_rw_224': _cfg(
|
|
|
|
'coatnet_bn_0_rw_224': _cfg(
|
|
|
@ -94,6 +95,8 @@ default_cfgs = {
|
|
|
|
'coatnet_rmlp_0_rw_224': _cfg(url=''),
|
|
|
|
'coatnet_rmlp_0_rw_224': _cfg(url=''),
|
|
|
|
'coatnet_rmlp_1_rw_224': _cfg(
|
|
|
|
'coatnet_rmlp_1_rw_224': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'),
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'),
|
|
|
|
|
|
|
|
'coatnet_rmlp_2_rw_224': _cfg(url=''),
|
|
|
|
|
|
|
|
'coatnet_rmlp_3_rw_224': _cfg(url=''),
|
|
|
|
'coatnet_nano_cc_224': _cfg(url=''),
|
|
|
|
'coatnet_nano_cc_224': _cfg(url=''),
|
|
|
|
'coatnext_nano_rw_224': _cfg(url=''),
|
|
|
|
'coatnext_nano_rw_224': _cfg(url=''),
|
|
|
|
|
|
|
|
|
|
|
@ -122,10 +125,19 @@ default_cfgs = {
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_rmlp_tiny_rw_256': _cfg(
|
|
|
|
'maxvit_rmlp_tiny_rw_256': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-2da819a5.pth',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
'maxvit_rmlp_small_rw_224': _cfg(
|
|
|
|
|
|
|
|
url=''),
|
|
|
|
|
|
|
|
'maxvit_rmlp_small_rw_256': _cfg(
|
|
|
|
|
|
|
|
url='',
|
|
|
|
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
'maxvit_tiny_pm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_tiny_pm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
'maxxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
'maxxvit_tiny_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
'maxxvit_small_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
|
|
|
# Trying to be like the MaxViT paper configs
|
|
|
|
# Trying to be like the MaxViT paper configs
|
|
|
|
'maxvit_tiny_224': _cfg(url=''),
|
|
|
|
'maxvit_tiny_224': _cfg(url=''),
|
|
|
@ -182,7 +194,7 @@ class MaxxVitConvCfg:
|
|
|
|
attn_layer: str = 'se'
|
|
|
|
attn_layer: str = 'se'
|
|
|
|
attn_act_layer: str = 'silu'
|
|
|
|
attn_act_layer: str = 'silu'
|
|
|
|
attn_ratio: float = 0.25
|
|
|
|
attn_ratio: float = 0.25
|
|
|
|
init_values: Optional[float] = 1e-5 # for ConvNeXt block
|
|
|
|
init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv
|
|
|
|
act_layer: str = 'gelu'
|
|
|
|
act_layer: str = 'gelu'
|
|
|
|
norm_layer: str = ''
|
|
|
|
norm_layer: str = ''
|
|
|
|
norm_layer_cl: str = ''
|
|
|
|
norm_layer_cl: str = ''
|
|
|
@ -218,10 +230,12 @@ def _rw_coat_cfg(
|
|
|
|
pool_type='avg2',
|
|
|
|
pool_type='avg2',
|
|
|
|
conv_output_bias=False,
|
|
|
|
conv_output_bias=False,
|
|
|
|
conv_attn_early=False,
|
|
|
|
conv_attn_early=False,
|
|
|
|
|
|
|
|
conv_attn_act_layer='relu',
|
|
|
|
conv_norm_layer='',
|
|
|
|
conv_norm_layer='',
|
|
|
|
transformer_shortcut_bias=True,
|
|
|
|
transformer_shortcut_bias=True,
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
|
|
|
|
init_values=None,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_dim=512,
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
):
|
|
|
@ -246,7 +260,7 @@ def _rw_coat_cfg(
|
|
|
|
expand_output=False,
|
|
|
|
expand_output=False,
|
|
|
|
output_bias=conv_output_bias,
|
|
|
|
output_bias=conv_output_bias,
|
|
|
|
attn_early=conv_attn_early,
|
|
|
|
attn_early=conv_attn_early,
|
|
|
|
attn_act_layer='relu',
|
|
|
|
attn_act_layer=conv_attn_act_layer,
|
|
|
|
act_layer='silu',
|
|
|
|
act_layer='silu',
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
),
|
|
|
|
),
|
|
|
@ -254,6 +268,7 @@ def _rw_coat_cfg(
|
|
|
|
expand_first=False,
|
|
|
|
expand_first=False,
|
|
|
|
shortcut_bias=transformer_shortcut_bias,
|
|
|
|
shortcut_bias=transformer_shortcut_bias,
|
|
|
|
pool_type=pool_type,
|
|
|
|
pool_type=pool_type,
|
|
|
|
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
@ -272,6 +287,7 @@ def _rw_max_cfg(
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
window_size=None,
|
|
|
|
window_size=None,
|
|
|
|
dim_head=32,
|
|
|
|
dim_head=32,
|
|
|
|
|
|
|
|
init_values=None,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_dim=512,
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
):
|
|
|
@ -296,6 +312,7 @@ def _rw_max_cfg(
|
|
|
|
pool_type=pool_type,
|
|
|
|
pool_type=pool_type,
|
|
|
|
dim_head=dim_head,
|
|
|
|
dim_head=dim_head,
|
|
|
|
window_size=window_size,
|
|
|
|
window_size=window_size,
|
|
|
|
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
@ -312,7 +329,8 @@ def _next_cfg(
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
window_size=None,
|
|
|
|
window_size=None,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
rel_pos_type='mlp', # MLP by default for maxxvit
|
|
|
|
rel_pos_dim=512,
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
):
|
|
|
|
# For experimental models with convnext instead of mbconv
|
|
|
|
# For experimental models with convnext instead of mbconv
|
|
|
@ -322,6 +340,7 @@ def _next_cfg(
|
|
|
|
stride_mode=stride_mode,
|
|
|
|
stride_mode=stride_mode,
|
|
|
|
pool_type=pool_type,
|
|
|
|
pool_type=pool_type,
|
|
|
|
expand_output=False,
|
|
|
|
expand_output=False,
|
|
|
|
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
norm_layer_cl=conv_norm_layer_cl,
|
|
|
|
norm_layer_cl=conv_norm_layer_cl,
|
|
|
|
),
|
|
|
|
),
|
|
|
@ -329,6 +348,7 @@ def _next_cfg(
|
|
|
|
expand_first=False,
|
|
|
|
expand_first=False,
|
|
|
|
pool_type=pool_type,
|
|
|
|
pool_type=pool_type,
|
|
|
|
window_size=window_size,
|
|
|
|
window_size=window_size,
|
|
|
|
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
@ -381,7 +401,21 @@ model_cfgs = dict(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(64, 128),
|
|
|
|
stem_width=(64, 128),
|
|
|
|
**_rw_coat_cfg(stride_mode='dw'),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
|
|
|
|
stride_mode='dw',
|
|
|
|
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
coatnet_3_rw_224=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
|
|
|
|
stem_width=(96, 192),
|
|
|
|
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
|
|
|
|
stride_mode='dw',
|
|
|
|
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
# Highly experimental configs
|
|
|
|
# Highly experimental configs
|
|
|
@ -428,6 +462,29 @@ model_cfgs = dict(
|
|
|
|
rel_pos_dim=384, # was supposed to be 512, woops
|
|
|
|
rel_pos_dim=384, # was supposed to be 512, woops
|
|
|
|
),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
coatnet_rmlp_2_rw_224=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
|
|
|
|
stem_width=(64, 128),
|
|
|
|
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
|
|
|
|
stride_mode='dw',
|
|
|
|
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
rel_pos_type='mlp'
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
coatnet_rmlp_3_rw_224=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
|
|
|
|
stem_width=(96, 192),
|
|
|
|
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
|
|
|
|
stride_mode='dw',
|
|
|
|
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
rel_pos_type='mlp'
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
coatnet_nano_cc_224=MaxxVitCfg(
|
|
|
|
coatnet_nano_cc_224=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
@ -504,6 +561,7 @@ model_cfgs = dict(
|
|
|
|
stem_width=(32, 64),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
maxvit_rmlp_pico_rw_256=MaxxVitCfg(
|
|
|
|
maxvit_rmlp_pico_rw_256=MaxxVitCfg(
|
|
|
|
embed_dim=(32, 64, 128, 256),
|
|
|
|
embed_dim=(32, 64, 128, 256),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
@ -525,6 +583,27 @@ model_cfgs = dict(
|
|
|
|
stem_width=(32, 64),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
maxvit_rmlp_small_rw_224=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
|
|
|
|
stem_width=(32, 64),
|
|
|
|
|
|
|
|
**_rw_max_cfg(
|
|
|
|
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
maxvit_rmlp_small_rw_256=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
|
|
|
|
stem_width=(32, 64),
|
|
|
|
|
|
|
|
**_rw_max_cfg(
|
|
|
|
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
|
|
|
|
init_values=1e-6,
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
maxvit_tiny_pm_256=MaxxVitCfg(
|
|
|
|
maxvit_tiny_pm_256=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
@ -532,6 +611,7 @@ model_cfgs = dict(
|
|
|
|
stem_width=(32, 64),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
maxxvit_nano_rw_256=MaxxVitCfg(
|
|
|
|
maxxvit_nano_rw_256=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
@ -540,6 +620,20 @@ model_cfgs = dict(
|
|
|
|
weight_init='normal',
|
|
|
|
weight_init='normal',
|
|
|
|
**_next_cfg(),
|
|
|
|
**_next_cfg(),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
maxxvit_tiny_rw_256=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
|
|
|
|
stem_width=(32, 64),
|
|
|
|
|
|
|
|
**_next_cfg(),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
maxxvit_small_rw_256=MaxxVitCfg(
|
|
|
|
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
|
|
|
|
stem_width=(48, 96),
|
|
|
|
|
|
|
|
**_next_cfg(),
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
|
|
# Trying to be like the MaxViT paper configs
|
|
|
|
# Trying to be like the MaxViT paper configs
|
|
|
|
maxvit_tiny_224=MaxxVitCfg(
|
|
|
|
maxvit_tiny_224=MaxxVitCfg(
|
|
|
@ -1641,6 +1735,11 @@ def coatnet_2_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def coatnet_3_rw_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def coatnet_bn_0_rw_224(pretrained=False, **kwargs):
|
|
|
|
def coatnet_bn_0_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs)
|
|
|
@ -1661,6 +1760,16 @@ def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def coatnet_nano_cc_224(pretrained=False, **kwargs):
|
|
|
|
def coatnet_nano_cc_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs)
|
|
|
@ -1736,6 +1845,16 @@ def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_pm_256(pretrained=False, **kwargs):
|
|
|
|
def maxvit_tiny_pm_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs)
|
|
|
@ -1746,6 +1865,16 @@ def maxxvit_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvit_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('maxxvit_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def maxxvit_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('maxxvit_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def maxxvit_small_rw_256(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
return _create_maxxvit('maxxvit_small_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_224(pretrained=False, **kwargs):
|
|
|
|
def maxvit_tiny_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_224', pretrained=pretrained, **kwargs)
|
|
|
|
return _create_maxxvit('maxvit_tiny_224', pretrained=pretrained, **kwargs)
|
|
|
|