Update README.md

pull/625/head
Ross Wightman 4 years ago
parent 504fef4bc1
commit f480734ad5

@ -23,6 +23,20 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor
## What's New ## What's New
### May 5, 2021
* Add MLP-Mixer models and port pretrained weights from [Google JAX impl](https://github.com/google-research/vision_transformer/tree/linen)
* Add CaiT models and pretrained weights from [FB](https://github.com/facebookresearch/deit)
* Add ResNet-RS models and weights from [TF](https://github.com/tensorflow/tpu/tree/master/models/official/resnet/resnet_rs). Thanks [Aman Arora](https://github.com/amaarora)
* Add CoaT models and weights. Thanks [Mohammed Rizin](https://github.com/morizin)
* Add new ImageNet-21k weights & finetuned weights for TResNet, MobileNet-V3, ViT models. Thanks [mrT](https://github.com/mrT23)
* Add GhostNet models and weights. Thanks [Kai Han](https://github.com/iamhankai)
* Update ByoaNet attention modles
* Improve SA module inits
* Hack together experimental stand-alone Swin based attn module and `swinnet`
* Consistent '26t' model defs for experiments.
* Add improved Efficientnet-V2S (prelim model def) weights. 83.8 top-1.
* WandB logging support
### April 13, 2021 ### April 13, 2021
* Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer * Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer
@ -182,6 +196,8 @@ A full version of the list below with source links can be found in the [document
* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 * Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 * CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
* DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877 * DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877
* DenseNet - https://arxiv.org/abs/1608.06993 * DenseNet - https://arxiv.org/abs/1608.06993
@ -192,11 +208,13 @@ A full version of the list below with source links can be found in the [document
* EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
* EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
* EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
* EfficientNet V2 - https://arxiv.org/abs/2104.00298
* FBNet-C - https://arxiv.org/abs/1812.03443 * FBNet-C - https://arxiv.org/abs/1812.03443
* MixNet - https://arxiv.org/abs/1907.09595 * MixNet - https://arxiv.org/abs/1907.09595
* MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
* MobileNet-V2 - https://arxiv.org/abs/1801.04381 * MobileNet-V2 - https://arxiv.org/abs/1801.04381
* Single-Path NAS - https://arxiv.org/abs/1904.02877 * Single-Path NAS - https://arxiv.org/abs/1904.02877
* GhostNet - https://arxiv.org/abs/1911.11907
* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 * GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
* Halo Nets - https://arxiv.org/abs/2103.12731 * Halo Nets - https://arxiv.org/abs/2103.12731
* HardCoRe-NAS - https://arxiv.org/abs/2102.11646 * HardCoRe-NAS - https://arxiv.org/abs/2102.11646
@ -204,6 +222,7 @@ A full version of the list below with source links can be found in the [document
* Inception-V3 - https://arxiv.org/abs/1512.00567 * Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 * Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* Lambda Networks - https://arxiv.org/abs/2102.08602 * Lambda Networks - https://arxiv.org/abs/2102.08602
* MLP-Mixer - https://arxiv.org/abs/2105.01601
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 * MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
* NASNet-A - https://arxiv.org/abs/1707.07012 * NASNet-A - https://arxiv.org/abs/1707.07012
* NFNet-F - https://arxiv.org/abs/2102.06171 * NFNet-F - https://arxiv.org/abs/2102.06171
@ -220,6 +239,7 @@ A full version of the list below with source links can be found in the [document
* Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
* ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
* Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
* ResNet-RS - https://arxiv.org/abs/2103.07579
* Res2Net - https://arxiv.org/abs/1904.01169 * Res2Net - https://arxiv.org/abs/1904.01169
* ResNeSt - https://arxiv.org/abs/2004.08955 * ResNeSt - https://arxiv.org/abs/2004.08955
* ReXNet - https://arxiv.org/abs/2007.00992 * ReXNet - https://arxiv.org/abs/2007.00992

Loading…
Cancel
Save