Fix NF-ResNet101 model defs

pull/389/head
Ross Wightman 4 years ago
parent 2c988c3b6e
commit f0e65e37b7

@ -97,7 +97,7 @@ model_cfgs = dict(
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer=None), act_layer='relu', attn_layer=None),
nf_resnet101=NfCfg( nf_resnet101=NfCfg(
depths=(3, 4, 6, 3), channels=(256, 512, 1024, 2048), depths=(3, 4, 23, 3), channels=(256, 512, 1024, 2048),
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer=None), act_layer='relu', attn_layer=None),
@ -111,7 +111,7 @@ model_cfgs = dict(
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer='se', attn_kwargs=dict(reduction_ratio=0.25)), act_layer='relu', attn_layer='se', attn_kwargs=dict(reduction_ratio=0.25)),
nf_seresnet101=NfCfg( nf_seresnet101=NfCfg(
depths=(3, 4, 6, 3), channels=(256, 512, 1024, 2048), depths=(3, 4, 23, 3), channels=(256, 512, 1024, 2048),
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer='se', attn_kwargs=dict(reduction_ratio=0.25)), act_layer='relu', attn_layer='se', attn_kwargs=dict(reduction_ratio=0.25)),
@ -125,7 +125,7 @@ model_cfgs = dict(
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer='eca', attn_kwargs=dict()), act_layer='relu', attn_layer='eca', attn_kwargs=dict()),
nf_ecaresnet101=NfCfg( nf_ecaresnet101=NfCfg(
depths=(3, 4, 6, 3), channels=(256, 512, 1024, 2048), depths=(3, 4, 23, 3), channels=(256, 512, 1024, 2048),
stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None, stem_type='7x7_pool', stem_chs=64, width_factor=1.0, bottle_ratio=0.25, efficient=False, group_size=None,
act_layer='relu', attn_layer='eca', attn_kwargs=dict()), act_layer='relu', attn_layer='eca', attn_kwargs=dict()),
@ -439,6 +439,11 @@ def nf_resnet50(pretrained=False, **kwargs):
return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs) return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs)
@register_model
def nf_resnet101(pretrained=False, **kwargs):
return _create_normfreenet('nf_resnet101', pretrained=pretrained, **kwargs)
@register_model @register_model
def nf_seresnet26(pretrained=False, **kwargs): def nf_seresnet26(pretrained=False, **kwargs):
return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs) return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs)
@ -449,6 +454,11 @@ def nf_seresnet50(pretrained=False, **kwargs):
return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs) return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs)
@register_model
def nf_seresnet101(pretrained=False, **kwargs):
return _create_normfreenet('nf_seresnet101', pretrained=pretrained, **kwargs)
@register_model @register_model
def nf_ecaresnet26(pretrained=False, **kwargs): def nf_ecaresnet26(pretrained=False, **kwargs):
return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs) return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs)
@ -457,3 +467,7 @@ def nf_ecaresnet26(pretrained=False, **kwargs):
@register_model @register_model
def nf_ecaresnet50(pretrained=False, **kwargs): def nf_ecaresnet50(pretrained=False, **kwargs):
return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs) return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs)
@register_model
def nf_ecaresnet101(pretrained=False, **kwargs):
return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs)
Loading…
Cancel
Save