|
|
|
@ -9,12 +9,44 @@ import os
|
|
|
|
|
import time
|
|
|
|
|
import argparse
|
|
|
|
|
import logging
|
|
|
|
|
from contextlib import suppress
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
from timm.models import create_model, apply_test_time_pool
|
|
|
|
|
from timm.data import ImageDataset, create_loader, resolve_data_config
|
|
|
|
|
from timm.utils import AverageMeter, setup_default_logging
|
|
|
|
|
from timm.models import create_model, apply_test_time_pool, load_checkpoint
|
|
|
|
|
from timm.data import create_dataset, create_loader, resolve_data_config
|
|
|
|
|
from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from apex import amp
|
|
|
|
|
has_apex = True
|
|
|
|
|
except ImportError:
|
|
|
|
|
has_apex = False
|
|
|
|
|
|
|
|
|
|
has_native_amp = False
|
|
|
|
|
try:
|
|
|
|
|
if getattr(torch.cuda.amp, 'autocast') is not None:
|
|
|
|
|
has_native_amp = True
|
|
|
|
|
except AttributeError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from functorch.compile import memory_efficient_fusion
|
|
|
|
|
has_functorch = True
|
|
|
|
|
except ImportError as e:
|
|
|
|
|
has_functorch = False
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import torch._dynamo
|
|
|
|
|
has_dynamo = True
|
|
|
|
|
except ImportError:
|
|
|
|
|
has_dynamo = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
_logger = logging.getLogger('inference')
|
|
|
|
@ -23,8 +55,10 @@ _logger = logging.getLogger('inference')
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference')
|
|
|
|
|
parser.add_argument('data', metavar='DIR',
|
|
|
|
|
help='path to dataset')
|
|
|
|
|
parser.add_argument('--output_dir', metavar='DIR', default='./',
|
|
|
|
|
help='path to output files')
|
|
|
|
|
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
|
|
|
|
|
help='dataset type (default: ImageFolder/ImageTar if empty)')
|
|
|
|
|
parser.add_argument('--split', metavar='NAME', default='validation',
|
|
|
|
|
help='dataset split (default: validation)')
|
|
|
|
|
parser.add_argument('--model', '-m', metavar='MODEL', default='dpn92',
|
|
|
|
|
help='model architecture (default: dpn92)')
|
|
|
|
|
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
|
|
|
|
@ -32,17 +66,25 @@ parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
|
|
|
|
|
parser.add_argument('-b', '--batch-size', default=256, type=int,
|
|
|
|
|
metavar='N', help='mini-batch size (default: 256)')
|
|
|
|
|
parser.add_argument('--img-size', default=None, type=int,
|
|
|
|
|
metavar='N', help='Input image dimension')
|
|
|
|
|
metavar='N', help='Input image dimension, uses model default if empty')
|
|
|
|
|
parser.add_argument('--input-size', default=None, nargs=3, type=int,
|
|
|
|
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
|
|
|
|
|
parser.add_argument('--use-train-size', action='store_true', default=False,
|
|
|
|
|
help='force use of train input size, even when test size is specified in pretrained cfg')
|
|
|
|
|
parser.add_argument('--crop-pct', default=None, type=float,
|
|
|
|
|
metavar='N', help='Input image center crop pct')
|
|
|
|
|
parser.add_argument('--crop-mode', default=None, type=str,
|
|
|
|
|
metavar='N', help='Input image crop mode (squash, border, center). Model default if None.')
|
|
|
|
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
|
|
|
|
help='Override mean pixel value of dataset')
|
|
|
|
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
|
|
|
|
help='Override std deviation of of dataset')
|
|
|
|
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
|
|
|
|
help='Image resize interpolation type (overrides model)')
|
|
|
|
|
parser.add_argument('--num-classes', type=int, default=1000,
|
|
|
|
|
parser.add_argument('--num-classes', type=int, default=None,
|
|
|
|
|
help='Number classes in dataset')
|
|
|
|
|
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
|
|
|
|
|
help='path to class to idx mapping file (default: "")')
|
|
|
|
|
parser.add_argument('--log-freq', default=10, type=int,
|
|
|
|
|
metavar='N', help='batch logging frequency (default: 10)')
|
|
|
|
|
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
|
|
|
|
@ -51,10 +93,51 @@ parser.add_argument('--pretrained', dest='pretrained', action='store_true',
|
|
|
|
|
help='use pre-trained model')
|
|
|
|
|
parser.add_argument('--num-gpu', type=int, default=1,
|
|
|
|
|
help='Number of GPUS to use')
|
|
|
|
|
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
|
|
|
|
|
help='disable test time pool')
|
|
|
|
|
parser.add_argument('--topk', default=5, type=int,
|
|
|
|
|
parser.add_argument('--test-pool', dest='test_pool', action='store_true',
|
|
|
|
|
help='enable test time pool')
|
|
|
|
|
parser.add_argument('--channels-last', action='store_true', default=False,
|
|
|
|
|
help='Use channels_last memory layout')
|
|
|
|
|
parser.add_argument('--device', default='cuda', type=str,
|
|
|
|
|
help="Device (accelerator) to use.")
|
|
|
|
|
parser.add_argument('--amp', action='store_true', default=False,
|
|
|
|
|
help='use Native AMP for mixed precision training')
|
|
|
|
|
parser.add_argument('--amp-dtype', default='float16', type=str,
|
|
|
|
|
help='lower precision AMP dtype (default: float16)')
|
|
|
|
|
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
|
|
|
|
|
help='use ema version of weights if present')
|
|
|
|
|
parser.add_argument('--fuser', default='', type=str,
|
|
|
|
|
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
|
|
|
|
|
parser.add_argument('--dynamo-backend', default=None, type=str,
|
|
|
|
|
help="Select dynamo backend. Default: None")
|
|
|
|
|
|
|
|
|
|
scripting_group = parser.add_mutually_exclusive_group()
|
|
|
|
|
scripting_group.add_argument('--torchscript', default=False, action='store_true',
|
|
|
|
|
help='torch.jit.script the full model')
|
|
|
|
|
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
|
|
|
|
|
help="Enable AOT Autograd support.")
|
|
|
|
|
scripting_group.add_argument('--dynamo', default=False, action='store_true',
|
|
|
|
|
help="Enable Dynamo optimization.")
|
|
|
|
|
|
|
|
|
|
parser.add_argument('--results-dir',type=str, default=None,
|
|
|
|
|
help='folder for output results')
|
|
|
|
|
parser.add_argument('--results-file', type=str, default=None,
|
|
|
|
|
help='results filename (relative to results-dir)')
|
|
|
|
|
parser.add_argument('--results-format', type=str, default='csv',
|
|
|
|
|
help='results format (one of "csv", "json", "json-split", "parquet")')
|
|
|
|
|
parser.add_argument('--topk', default=1, type=int,
|
|
|
|
|
metavar='N', help='Top-k to output to CSV')
|
|
|
|
|
parser.add_argument('--fullname', action='store_true', default=False,
|
|
|
|
|
help='use full sample name in output (not just basename).')
|
|
|
|
|
parser.add_argument('--indices-name', default='index',
|
|
|
|
|
help='name for output indices column(s)')
|
|
|
|
|
parser.add_argument('--outputs-name', default=None,
|
|
|
|
|
help='name for logit/probs output column(s)')
|
|
|
|
|
parser.add_argument('--outputs-type', default='prob',
|
|
|
|
|
help='output type colum ("prob" for probabilities, "logit" for raw logits)')
|
|
|
|
|
parser.add_argument('--separate-columns', action='store_true', default=False,
|
|
|
|
|
help='separate output columns per result index.')
|
|
|
|
|
parser.add_argument('--exclude-outputs', action='store_true', default=False,
|
|
|
|
|
help='exclude logits/probs from results, just indices. topk must be set !=0.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
@ -63,48 +146,109 @@ def main():
|
|
|
|
|
# might as well try to do something useful...
|
|
|
|
|
args.pretrained = args.pretrained or not args.checkpoint
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
|
|
device = torch.device(args.device)
|
|
|
|
|
|
|
|
|
|
# resolve AMP arguments based on PyTorch / Apex availability
|
|
|
|
|
use_amp = None
|
|
|
|
|
amp_autocast = suppress
|
|
|
|
|
if args.amp:
|
|
|
|
|
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
|
|
|
|
|
assert args.amp_dtype in ('float16', 'bfloat16')
|
|
|
|
|
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
|
|
|
|
|
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
|
|
|
|
_logger.info('Running inference in mixed precision with native PyTorch AMP.')
|
|
|
|
|
else:
|
|
|
|
|
_logger.info('Running inference in float32. AMP not enabled.')
|
|
|
|
|
|
|
|
|
|
if args.fuser:
|
|
|
|
|
set_jit_fuser(args.fuser)
|
|
|
|
|
|
|
|
|
|
# create model
|
|
|
|
|
model = create_model(
|
|
|
|
|
args.model,
|
|
|
|
|
num_classes=args.num_classes,
|
|
|
|
|
in_chans=3,
|
|
|
|
|
pretrained=args.pretrained,
|
|
|
|
|
checkpoint_path=args.checkpoint)
|
|
|
|
|
checkpoint_path=args.checkpoint,
|
|
|
|
|
)
|
|
|
|
|
if args.num_classes is None:
|
|
|
|
|
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
|
|
|
|
|
args.num_classes = model.num_classes
|
|
|
|
|
|
|
|
|
|
_logger.info('Model %s created, param count: %d' %
|
|
|
|
|
(args.model, sum([m.numel() for m in model.parameters()])))
|
|
|
|
|
if args.checkpoint:
|
|
|
|
|
load_checkpoint(model, args.checkpoint, args.use_ema)
|
|
|
|
|
|
|
|
|
|
config = resolve_data_config(vars(args), model=model)
|
|
|
|
|
model, test_time_pool = (model, False) if args.no_test_pool else apply_test_time_pool(model, config)
|
|
|
|
|
_logger.info(
|
|
|
|
|
f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}')
|
|
|
|
|
|
|
|
|
|
if args.num_gpu > 1:
|
|
|
|
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
|
|
|
|
|
data_config = resolve_data_config(vars(args), model=model)
|
|
|
|
|
test_time_pool = False
|
|
|
|
|
if args.test_pool:
|
|
|
|
|
model, test_time_pool = apply_test_time_pool(model, data_config)
|
|
|
|
|
|
|
|
|
|
model = model.to(device)
|
|
|
|
|
model.eval()
|
|
|
|
|
if args.channels_last:
|
|
|
|
|
model = model.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
|
|
if args.torchscript:
|
|
|
|
|
model = torch.jit.script(model)
|
|
|
|
|
elif args.aot_autograd:
|
|
|
|
|
assert has_functorch, "functorch is needed for --aot-autograd"
|
|
|
|
|
model = memory_efficient_fusion(model)
|
|
|
|
|
elif args.dynamo:
|
|
|
|
|
assert has_dynamo, "torch._dynamo is needed for --dynamo"
|
|
|
|
|
torch._dynamo.reset()
|
|
|
|
|
if args.dynamo_backend is not None:
|
|
|
|
|
model = torch._dynamo.optimize(args.dynamo_backend)(model)
|
|
|
|
|
else:
|
|
|
|
|
model = model.cuda()
|
|
|
|
|
model = torch._dynamo.optimize()(model)
|
|
|
|
|
|
|
|
|
|
if args.num_gpu > 1:
|
|
|
|
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu)))
|
|
|
|
|
|
|
|
|
|
dataset = create_dataset(
|
|
|
|
|
root=args.data,
|
|
|
|
|
name=args.dataset,
|
|
|
|
|
split=args.split,
|
|
|
|
|
class_map=args.class_map,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if test_time_pool:
|
|
|
|
|
data_config['crop_pct'] = 1.0
|
|
|
|
|
|
|
|
|
|
loader = create_loader(
|
|
|
|
|
ImageDataset(args.data),
|
|
|
|
|
input_size=config['input_size'],
|
|
|
|
|
dataset,
|
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
|
use_prefetcher=True,
|
|
|
|
|
interpolation=config['interpolation'],
|
|
|
|
|
mean=config['mean'],
|
|
|
|
|
std=config['std'],
|
|
|
|
|
num_workers=args.workers,
|
|
|
|
|
crop_pct=1.0 if test_time_pool else config['crop_pct'])
|
|
|
|
|
**data_config,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
|
|
k = min(args.topk, args.num_classes)
|
|
|
|
|
top_k = min(args.topk, args.num_classes)
|
|
|
|
|
batch_time = AverageMeter()
|
|
|
|
|
end = time.time()
|
|
|
|
|
topk_ids = []
|
|
|
|
|
all_indices = []
|
|
|
|
|
all_outputs = []
|
|
|
|
|
use_probs = args.outputs_type == 'prob'
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
for batch_idx, (input, _) in enumerate(loader):
|
|
|
|
|
input = input.cuda()
|
|
|
|
|
labels = model(input)
|
|
|
|
|
topk = labels.topk(k)[1]
|
|
|
|
|
topk_ids.append(topk.cpu().numpy())
|
|
|
|
|
|
|
|
|
|
with amp_autocast():
|
|
|
|
|
output = model(input)
|
|
|
|
|
|
|
|
|
|
if use_probs:
|
|
|
|
|
output = output.softmax(-1)
|
|
|
|
|
|
|
|
|
|
if top_k:
|
|
|
|
|
output, indices = output.topk(top_k)
|
|
|
|
|
all_indices.append(indices.cpu().numpy())
|
|
|
|
|
|
|
|
|
|
all_outputs.append(output.cpu().numpy())
|
|
|
|
|
|
|
|
|
|
# measure elapsed time
|
|
|
|
|
batch_time.update(time.time() - end)
|
|
|
|
@ -114,13 +258,57 @@ def main():
|
|
|
|
|
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
|
|
|
|
|
batch_idx, len(loader), batch_time=batch_time))
|
|
|
|
|
|
|
|
|
|
topk_ids = np.concatenate(topk_ids, axis=0)
|
|
|
|
|
all_indices = np.concatenate(all_indices, axis=0) if all_indices else None
|
|
|
|
|
all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32)
|
|
|
|
|
filenames = loader.dataset.filenames(basename=not args.fullname)
|
|
|
|
|
|
|
|
|
|
outputs_name = args.outputs_name or ('prob' if use_probs else 'logit')
|
|
|
|
|
data_dict = {'filename': filenames}
|
|
|
|
|
if args.separate_columns and all_outputs.shape[-1] > 1:
|
|
|
|
|
if all_indices is not None:
|
|
|
|
|
for i in range(all_indices.shape[-1]):
|
|
|
|
|
data_dict[f'{args.indices_name}_{i}'] = all_indices[:, i]
|
|
|
|
|
for i in range(all_outputs.shape[-1]):
|
|
|
|
|
data_dict[f'{outputs_name}_{i}'] = all_outputs[:, i]
|
|
|
|
|
else:
|
|
|
|
|
if all_indices is not None:
|
|
|
|
|
if all_indices.shape[-1] == 1:
|
|
|
|
|
all_indices = all_indices.squeeze(-1)
|
|
|
|
|
data_dict[args.indices_name] = list(all_indices)
|
|
|
|
|
if all_outputs.shape[-1] == 1:
|
|
|
|
|
all_outputs = all_outputs.squeeze(-1)
|
|
|
|
|
data_dict[outputs_name] = list(all_outputs)
|
|
|
|
|
|
|
|
|
|
df = pd.DataFrame(data=data_dict)
|
|
|
|
|
|
|
|
|
|
results_filename = args.results_file
|
|
|
|
|
needs_ext = False
|
|
|
|
|
if not results_filename:
|
|
|
|
|
# base default filename on model name + img-size
|
|
|
|
|
img_size = data_config["input_size"][1]
|
|
|
|
|
results_filename = f'{args.model}-{img_size}'
|
|
|
|
|
needs_ext = True
|
|
|
|
|
|
|
|
|
|
with open(os.path.join(args.output_dir, './topk_ids.csv'), 'w') as out_file:
|
|
|
|
|
filenames = loader.dataset.filenames(basename=True)
|
|
|
|
|
for filename, label in zip(filenames, topk_ids):
|
|
|
|
|
out_file.write('{0},{1}\n'.format(
|
|
|
|
|
filename, ','.join([ str(v) for v in label])))
|
|
|
|
|
if args.results_dir:
|
|
|
|
|
results_filename = os.path.join(args.results_dir, results_filename)
|
|
|
|
|
|
|
|
|
|
if args.results_format == 'parquet':
|
|
|
|
|
if needs_ext:
|
|
|
|
|
results_filename += '.parquet'
|
|
|
|
|
df = df.set_index('filename')
|
|
|
|
|
df.to_parquet(results_filename)
|
|
|
|
|
elif args.results_format == 'json':
|
|
|
|
|
if needs_ext:
|
|
|
|
|
results_filename += '.json'
|
|
|
|
|
df.to_json(results_filename, lines=True, orient='records')
|
|
|
|
|
elif args.results_format == 'json-split':
|
|
|
|
|
if needs_ext:
|
|
|
|
|
results_filename += '.json'
|
|
|
|
|
df.to_json(results_filename, indent=4, orient='split', index=False)
|
|
|
|
|
else:
|
|
|
|
|
if needs_ext:
|
|
|
|
|
results_filename += '.csv'
|
|
|
|
|
df.to_csv(results_filename, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|