|
|
@ -36,7 +36,7 @@ def _cfg_coat(url='', **kwargs):
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic',
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
|
|
'first_conv': 'patch_embed1.proj', 'classifier': 'head',
|
|
|
|
**kwargs
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -654,7 +654,7 @@ def coat_lite_tiny(pretrained=False, **kwargs):
|
|
|
|
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0,
|
|
|
|
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0,
|
|
|
|
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
|
|
|
|
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs)
|
|
|
|
# FIXME use builder
|
|
|
|
# FIXME use builder
|
|
|
|
model.default_cfg = default_cfgs['coat_lite_mini']
|
|
|
|
model.default_cfg = default_cfgs['coat_lite_tiny']
|
|
|
|
if pretrained:
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|