parent
b1f1a54de9
commit
e3c11a36dc
@ -0,0 +1,83 @@
|
|||||||
|
# Archived Changes
|
||||||
|
|
||||||
|
### Feb 29, 2020
|
||||||
|
* New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1
|
||||||
|
* IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models
|
||||||
|
* overall results similar to a bit better training from scratch on a few smaller models tried
|
||||||
|
* performance early in training seems consistently improved but less difference by end
|
||||||
|
* set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour
|
||||||
|
* Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training
|
||||||
|
|
||||||
|
### Feb 18, 2020
|
||||||
|
* Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268):
|
||||||
|
* Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion
|
||||||
|
* ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks
|
||||||
|
* Add Selective Kernel Nets on top of ResNet base, pretrained weights
|
||||||
|
* skresnet18 - 73% top-1
|
||||||
|
* skresnet34 - 76.9% top-1
|
||||||
|
* skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1
|
||||||
|
* ECA and CECA (circular padding) attention layer contributed by [Chris Ha](https://github.com/VRandme)
|
||||||
|
* CBAM attention experiment (not the best results so far, may remove)
|
||||||
|
* Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the `.se` position for all ResNets
|
||||||
|
* Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants
|
||||||
|
* Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights
|
||||||
|
|
||||||
|
### Feb 12, 2020
|
||||||
|
* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
|
||||||
|
|
||||||
|
### Feb 6, 2020
|
||||||
|
* Add RandAugment trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams)
|
||||||
|
|
||||||
|
### Feb 1/2, 2020
|
||||||
|
* Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization.
|
||||||
|
* Update results csv files on all models for ImageNet validation and three other test sets
|
||||||
|
* Push PyPi package update
|
||||||
|
|
||||||
|
### Jan 31, 2020
|
||||||
|
* Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below.
|
||||||
|
|
||||||
|
### Jan 11/12, 2020
|
||||||
|
* Master may be a bit unstable wrt to training, these changes have been tested but not all combos
|
||||||
|
* Implementations of AugMix added to existing RA and AA. Including numerous supporting pieces like JSD loss (Jensen-Shannon divergence + CE), and AugMixDataset
|
||||||
|
* SplitBatchNorm adaptation layer added for implementing Auxiliary BN as per AdvProp paper
|
||||||
|
* ResNet-50 AugMix trained model w/ 79% top-1 added
|
||||||
|
* `seresnext26tn_32x4d` - 77.99 top-1, 93.75 top-5 added to tiered experiment, higher img/s than 't' and 'd'
|
||||||
|
|
||||||
|
### Jan 3, 2020
|
||||||
|
* Add RandAugment trained EfficientNet-B0 weight with 77.7 top-1. Trained by [Michael Klachko](https://github.com/michaelklachko) with this code and recent hparams (see Training section)
|
||||||
|
* Add `avg_checkpoints.py` script for post training weight averaging and update all scripts with header docstrings and shebangs.
|
||||||
|
|
||||||
|
### Dec 30, 2019
|
||||||
|
* Merge [Dushyant Mehta's](https://github.com/mehtadushy) PR for SelecSLS (Selective Short and Long Range Skip Connections) networks. Good GPU memory consumption and throughput. Original: https://github.com/mehtadushy/SelecSLS-Pytorch
|
||||||
|
|
||||||
|
### Dec 28, 2019
|
||||||
|
* Add new model weights and training hparams (see Training Hparams section)
|
||||||
|
* `efficientnet_b3` - 81.5 top-1, 95.7 top-5 at default res/crop, 81.9, 95.8 at 320x320 1.0 crop-pct
|
||||||
|
* trained with RandAugment, ended up with an interesting but less than perfect result (see training section)
|
||||||
|
* `seresnext26d_32x4d`- 77.6 top-1, 93.6 top-5
|
||||||
|
* deep stem (32, 32, 64), avgpool downsample
|
||||||
|
* stem/dowsample from bag-of-tricks paper
|
||||||
|
* `seresnext26t_32x4d`- 78.0 top-1, 93.7 top-5
|
||||||
|
* deep tiered stem (24, 48, 64), avgpool downsample (a modified 'D' variant)
|
||||||
|
* stem sizing mods from Jeremy Howard and fastai devs discussing ResNet architecture experiments
|
||||||
|
|
||||||
|
### Dec 23, 2019
|
||||||
|
* Add RandAugment trained MixNet-XL weights with 80.48 top-1.
|
||||||
|
* `--dist-bn` argument added to train.py, will distribute BN stats between nodes after each train epoch, before eval
|
||||||
|
|
||||||
|
### Dec 4, 2019
|
||||||
|
* Added weights from the first training from scratch of an EfficientNet (B2) with my new RandAugment implementation. Much better than my previous B2 and very close to the official AdvProp ones (80.4 top-1, 95.08 top-5).
|
||||||
|
|
||||||
|
### Nov 29, 2019
|
||||||
|
* Brought EfficientNet and MobileNetV3 up to date with my https://github.com/rwightman/gen-efficientnet-pytorch code. Torchscript and ONNX export compat excluded.
|
||||||
|
* AdvProp weights added
|
||||||
|
* Official TF MobileNetv3 weights added
|
||||||
|
* EfficientNet and MobileNetV3 hook based 'feature extraction' classes added. Will serve as basis for using models as backbones in obj detection/segmentation tasks. Lots more to be done here...
|
||||||
|
* HRNet classification models and weights added from https://github.com/HRNet/HRNet-Image-Classification
|
||||||
|
* Consistency in global pooling, `reset_classifer`, and `forward_features` across models
|
||||||
|
* `forward_features` always returns unpooled feature maps now
|
||||||
|
* Reasonable chance I broke something... let me know
|
||||||
|
|
||||||
|
### Nov 22, 2019
|
||||||
|
* Add ImageNet training RandAugment implementation alongside AutoAugment. PyTorch Transform compatible format, using PIL. Currently training two EfficientNet models from scratch with promising results... will update.
|
||||||
|
* `drop-connect` cmd line arg finally added to `train.py`, no need to hack model fns. Works for efficientnet/mobilenetv3 based models, ignored otherwise.
|
@ -0,0 +1,187 @@
|
|||||||
|
# Results
|
||||||
|
|
||||||
|
CSV files containing an ImageNet-1K validation and OOD test set validation results for all included models with pretrained weights and default configurations is located [here](https://github.com/rwightman/pytorch-image-models/tree/master/results).
|
||||||
|
|
||||||
|
## Self-trained Weights
|
||||||
|
I've leveraged the training scripts in this repository to train a few of the models with to good levels of performance.
|
||||||
|
|
||||||
|
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
|
||||||
|
|---|---|---|---|---|---|
|
||||||
|
| efficientnet_b3a | 81.874 (18.126) | 95.840 (4.160) | 12.23M | bicubic | 320 (1.0 crop) |
|
||||||
|
| efficientnet_b3 | 81.498 (18.502) | 95.718 (4.282) | 12.23M | bicubic | 300 |
|
||||||
|
| skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5M | bicubic | 288 (1.0 crop) |
|
||||||
|
| efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11M | bicubic | 288 (1.0 crop) |
|
||||||
|
| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90M | bicubic | 224 |
|
||||||
|
| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11M | bicubic | 260 |
|
||||||
|
| skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5M | bicubic | 224 |
|
||||||
|
| resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25M | bicubic | 224 |
|
||||||
|
| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1M | bicubic | 224 |
|
||||||
|
| ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6M | bicubic | 224 |
|
||||||
|
| resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6M | bicubic | 224 |
|
||||||
|
| resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6M | bicubic | 224 |
|
||||||
|
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33M | bicubic | 224 |
|
||||||
|
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79M | bicubic | 240 |
|
||||||
|
| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44M | bicubic | 224 |
|
||||||
|
| seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8M | bicubic | 224 |
|
||||||
|
| seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8M | bicubic | 224 |
|
||||||
|
| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29M | bicubic | 224 |
|
||||||
|
| seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8M | bicubic | 224 |
|
||||||
|
| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8M | bicubic | 224 |
|
||||||
|
| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01M | bicubic | 224 |
|
||||||
|
| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8M | bicubic | 224 |
|
||||||
|
| skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2M | bicubic | 224 |
|
||||||
|
| ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5M | bicubic | 224 |
|
||||||
|
| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16M | bicubic | 224 |
|
||||||
|
| densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0M | bicubic | 224 |
|
||||||
|
| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1M | bicubic | 224 |
|
||||||
|
| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13M | bicubic | 224 |
|
||||||
|
| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5M | bicubic | 224 |
|
||||||
|
| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5M | bicubic | 224 |
|
||||||
|
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89M | bicubic | 224 |
|
||||||
|
| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16M | bicubic | 224 |
|
||||||
|
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6M | bilinear | 224 |
|
||||||
|
| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22M | bilinear | 224 |
|
||||||
|
| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5M | bicubic | 224 |
|
||||||
|
| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22M | bilinear | 224 |
|
||||||
|
| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38M | bicubic | 224 |
|
||||||
|
| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42M | bilinear | 224 |
|
||||||
|
| skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9M | bicubic | 224 |
|
||||||
|
| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5M | bicubic | 224 |
|
||||||
|
| seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8M | bicubic | 224 |
|
||||||
|
|
||||||
|
## Ported Weights
|
||||||
|
For the models below, the model code and weight porting from Tensorflow or MXNet Gluon to Pytorch was done by myself. There are weights/models ported by others included in this repository, they are not listed below.
|
||||||
|
|
||||||
|
| Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size |
|
||||||
|
|---|---|---|---|---|---|
|
||||||
|
| tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 |
|
||||||
|
| tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 |
|
||||||
|
| tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454)f | 480 | bicubic | 475 |
|
||||||
|
| tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 |
|
||||||
|
| tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 |
|
||||||
|
| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 |
|
||||||
|
| tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 |
|
||||||
|
| tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 |
|
||||||
|
| tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 |
|
||||||
|
| tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 |
|
||||||
|
| tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 |
|
||||||
|
| tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 |
|
||||||
|
| tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 |
|
||||||
|
| tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 |
|
||||||
|
| tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 |
|
||||||
|
| tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 |
|
||||||
|
| tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 |
|
||||||
|
| tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 |
|
||||||
|
| gluon_senet154 | 81.224 (18.776) | 95.356 (4.644) | 115.09 | bicubic | 224 |
|
||||||
|
| gluon_resnet152_v1s | 81.012 (18.988) | 95.416 (4.584) | 60.32 | bicubic | 224 |
|
||||||
|
| gluon_seresnext101_32x4d | 80.902 (19.098) | 95.294 (4.706) | 48.96 | bicubic | 224 |
|
||||||
|
| gluon_seresnext101_64x4d | 80.890 (19.110) | 95.304 (4.696) | 88.23 | bicubic | 224 |
|
||||||
|
| gluon_resnext101_64x4d | 80.602 (19.398) | 94.994 (5.006) | 83.46 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 |
|
||||||
|
| tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 |
|
||||||
|
| gluon_resnet152_v1d | 80.470 (19.530) | 95.206 (4.794) | 60.21 | bicubic | 224 |
|
||||||
|
| gluon_resnet101_v1d | 80.424 (19.576) | 95.020 (4.980) | 44.57 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 |
|
||||||
|
| gluon_resnext101_32x4d | 80.334 (19.666) | 94.926 (5.074) | 44.18 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 |
|
||||||
|
| gluon_resnet101_v1s | 80.300 (19.700) | 95.150 (4.850) | 44.67 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 |
|
||||||
|
| tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 |
|
||||||
|
| gluon_resnet152_v1c | 79.916 (20.084) | 94.842 (5.158) | 60.21 | bicubic | 224 |
|
||||||
|
| gluon_seresnext50_32x4d | 79.912 (20.088) | 94.818 (5.182) | 27.56 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 |
|
||||||
|
| tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 |
|
||||||
|
| gluon_resnet152_v1b | 79.692 (20.308) | 94.738 (5.262) | 60.19 | bicubic | 224 |
|
||||||
|
| gluon_xception65 | 79.604 (20.396) | 94.748 (5.252) | 39.92 | bicubic | 299 |
|
||||||
|
| gluon_resnet101_v1c | 79.544 (20.456) | 94.586 (5.414) | 44.57 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 |
|
||||||
|
| tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 |
|
||||||
|
| gluon_resnext50_32x4d | 79.356 (20.644) | 94.424 (5.576) | 25.03 | bicubic | 224 |
|
||||||
|
| gluon_resnet101_v1b | 79.304 (20.696) | 94.524 (5.476) | 44.55 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 |
|
||||||
|
| tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 |
|
||||||
|
| tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 |
|
||||||
|
| gluon_resnet50_v1d | 79.074 (20.926) | 94.476 (5.524) | 25.58 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 |
|
||||||
|
| tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 |
|
||||||
|
| tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 |
|
||||||
|
| tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 |
|
||||||
|
| gluon_inception_v3 | 78.804 (21.196) | 94.380 (5.620) | 27.16M | bicubic | 299 |
|
||||||
|
| tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 |
|
||||||
|
| gluon_resnet50_v1s | 78.712 (21.288) | 94.242 (5.758) | 25.68 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 |
|
||||||
|
| gluon_resnet50_v1c | 78.010 (21.990) | 93.988 (6.012) | 25.58 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 |
|
||||||
|
| tf_inception_v3 | 77.856 (22.144) | 93.644 (6.356) | 27.16M | bicubic | 299 |
|
||||||
|
| tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 |
|
||||||
|
| gluon_resnet50_v1b | 77.578 (22.422) | 93.718 (6.282) | 25.56 | bicubic | 224 |
|
||||||
|
| adv_inception_v3 | 77.576 (22.424) | 93.724 (6.276) | 27.16M | bicubic | 299 |
|
||||||
|
| tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 |
|
||||||
|
| tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 |
|
||||||
|
| tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 |
|
||||||
|
| tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 |
|
||||||
|
| tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 |
|
||||||
|
| tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 |
|
||||||
|
| tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 |
|
||||||
|
| tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 |
|
||||||
|
| tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 |
|
||||||
|
| tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 |
|
||||||
|
| tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 |
|
||||||
|
| tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 |
|
||||||
|
| gluon_resnet34_v1b | 74.580 (25.420) | 91.988 (8.012) | 21.80 | bicubic | 224 |
|
||||||
|
| tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 |
|
||||||
|
| tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 |
|
||||||
|
|
||||||
|
Models with `*tfp` next to them were scored with `--tf-preprocessing` flag.
|
||||||
|
|
||||||
|
The `tf_efficientnet`, `tf_mixnet` models require an equivalent for 'SAME' padding as their arch results in asymmetric padding. I've added this in the model creation wrapper, but it does come with a performance penalty.
|
||||||
|
|
||||||
|
Sources for original weights:
|
||||||
|
* `tf_efficientnet*`: [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
|
||||||
|
* `tf_efficientnet_e*`: [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu)
|
||||||
|
* `tf_mixnet*`: [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet)
|
||||||
|
* `tf_inception*`: [Tensorflow Slim](https://github.com/tensorflow/models/tree/master/research/slim)
|
||||||
|
* `gluon_*`: [MxNet Gluon](https://gluon-cv.mxnet.io/model_zoo/classification.html)
|
@ -0,0 +1,27 @@
|
|||||||
|
# Scripts
|
||||||
|
A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.
|
||||||
|
|
||||||
|
The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on
|
||||||
|
[NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples).
|
||||||
|
|
||||||
|
## Training Script
|
||||||
|
|
||||||
|
The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder.
|
||||||
|
|
||||||
|
To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:
|
||||||
|
|
||||||
|
`./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 -j 4`
|
||||||
|
|
||||||
|
NOTE: NVIDIA APEX should be installed to run in per-process distributed via DDP or to enable AMP mixed precision with the --amp flag
|
||||||
|
|
||||||
|
## Validation / Inference Scripts
|
||||||
|
|
||||||
|
Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.
|
||||||
|
|
||||||
|
To validate with the model's pretrained weights (if they exist):
|
||||||
|
|
||||||
|
`python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained`
|
||||||
|
|
||||||
|
To run inference from a checkpoint:
|
||||||
|
|
||||||
|
`python inference.py /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/model_best.pth.tar`
|
@ -0,0 +1,47 @@
|
|||||||
|
## Training Hyperparameter Examples
|
||||||
|
|
||||||
|
### EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5
|
||||||
|
These params are for dual Titan RTX cards with NVIDIA Apex installed:
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016`
|
||||||
|
|
||||||
|
### MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5
|
||||||
|
This params are for dual Titan RTX cards with NVIDIA Apex installed:
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce`
|
||||||
|
|
||||||
|
### SE-ResNeXt-26-D and SE-ResNeXt-26-T
|
||||||
|
These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards:
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112`
|
||||||
|
|
||||||
|
### EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5
|
||||||
|
The training of this model started with the same command line as EfficientNet-B2 w/ RA above. After almost three weeks of training the process crashed. The results weren't looking amazing so I resumed the training several times with tweaks to a few params (increase RE prob, decrease rand-aug, increase ema-decay). Nothing looked great. I ended up averaging the best checkpoints from all restarts. The result is mediocre at default res/crop but oddly performs much better with a full image test crop of 1.0.
|
||||||
|
|
||||||
|
### EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5
|
||||||
|
[Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2.
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048`
|
||||||
|
|
||||||
|
### ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5
|
||||||
|
|
||||||
|
Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths.
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce`
|
||||||
|
|
||||||
|
### EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5
|
||||||
|
Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training.
|
||||||
|
|
||||||
|
`./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064`
|
||||||
|
|
||||||
|
### MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5
|
||||||
|
|
||||||
|
`./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9`
|
||||||
|
|
||||||
|
|
||||||
|
### ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5
|
||||||
|
These params will also work well for SE-ResNeXt-50 and SK-ResNeXt-50 and likely 101. I used them for the SK-ResNeXt-50 32x4d that I trained with 2 GPU using a slightly higher LR per effective batch size (lr=0.18, b=192 per GPU). The cmd line below are tuned for 8 GPU training.
|
||||||
|
|
||||||
|
|
||||||
|
`./distributed_train.sh 8 /imagenet --model resnext50_32x4d --lr 0.6 --warmup-epochs 5 --epochs 240 --weight-decay 1e-4 --sched cosine --reprob 0.4 --recount 3 --remode pixel --aa rand-m7-mstd0.5-inc1 -b 192 -j 6 --amp --dist-bn reduce`
|
||||||
|
|
Loading…
Reference in new issue