|
|
@ -154,6 +154,9 @@ default_cfgs = {
|
|
|
|
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth',
|
|
|
|
url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth',
|
|
|
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'efficientnet_v2s': _cfg(
|
|
|
|
|
|
|
|
url='', input_size=(3, 224, 224), test_size=(3, 300, 300), pool_size=(7, 7)), # FIXME WIP
|
|
|
|
|
|
|
|
|
|
|
|
'tf_efficientnet_b0': _cfg(
|
|
|
|
'tf_efficientnet_b0': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth',
|
|
|
|
input_size=(3, 224, 224)),
|
|
|
|
input_size=(3, 224, 224)),
|
|
|
@ -819,6 +822,37 @@ def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_efficientnet_v2s(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" Creates an EfficientNet-V2s model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NOTE: this is a preliminary definition based on paper, awaiting official code release for details
|
|
|
|
|
|
|
|
and weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ref impl:
|
|
|
|
|
|
|
|
Paper: https://arxiv.org/abs/2104.00298
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arch_def = [
|
|
|
|
|
|
|
|
['er_r2_k3_s1_e1_c24_noskip'],
|
|
|
|
|
|
|
|
['er_r4_k3_s2_e4_c48'],
|
|
|
|
|
|
|
|
['er_r4_k3_s2_e4_c64'],
|
|
|
|
|
|
|
|
['ir_r6_k3_s2_e4_c128_se0.25'],
|
|
|
|
|
|
|
|
['ir_r9_k3_s1_e6_c160_se0.25'],
|
|
|
|
|
|
|
|
['ir_r15_k3_s2_e6_c272_se0.25'],
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
|
|
|
block_args=decode_arch_def(arch_def, depth_multiplier),
|
|
|
|
|
|
|
|
num_features=round_channels(1792, channel_multiplier, 8, None),
|
|
|
|
|
|
|
|
stem_size=24,
|
|
|
|
|
|
|
|
channel_multiplier=channel_multiplier,
|
|
|
|
|
|
|
|
norm_kwargs=resolve_bn_args(kwargs),
|
|
|
|
|
|
|
|
act_layer=resolve_act_layer(kwargs, 'silu'),
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
model = _create_effnet(variant, pretrained, **model_kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
|
|
|
|
"""Creates a MixNet Small model.
|
|
|
|
"""Creates a MixNet Small model.
|
|
|
|
|
|
|
|
|
|
|
@ -1258,6 +1292,15 @@ def efficientnet_b3_pruned(pretrained=False, **kwargs):
|
|
|
|
return model
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
|
|
|
def efficientnet_v2s(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
""" EfficientNet-V2 Small. """
|
|
|
|
|
|
|
|
model = _gen_efficientnet_v2s(
|
|
|
|
|
|
|
|
'efficientnet_v2s', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
@register_model
|
|
|
|
def tf_efficientnet_b0(pretrained=False, **kwargs):
|
|
|
|
def tf_efficientnet_b0(pretrained=False, **kwargs):
|
|
|
|
""" EfficientNet-B0. Tensorflow compatible variant """
|
|
|
|
""" EfficientNet-B0. Tensorflow compatible variant """
|
|
|
|