Initial commit for dataset / parser reorg to support additional datasets / types

pull/323/head
Ross Wightman 4 years ago
parent 392595c7eb
commit de6046e213

@ -13,7 +13,7 @@ import numpy as np
import torch import torch
from timm.models import create_model, apply_test_time_pool from timm.models import create_model, apply_test_time_pool
from timm.data import Dataset, create_loader, resolve_data_config from timm.data import ImageDataset, create_loader, resolve_data_config
from timm.utils import AverageMeter, setup_default_logging from timm.utils import AverageMeter, setup_default_logging
torch.backends.cudnn.benchmark = True torch.backends.cudnn.benchmark = True
@ -81,7 +81,7 @@ def main():
model = model.cuda() model = model.cuda()
loader = create_loader( loader = create_loader(
Dataset(args.data), ImageDataset(args.data),
input_size=config['input_size'], input_size=config['input_size'],
batch_size=args.batch_size, batch_size=args.batch_size,
use_prefetcher=True, use_prefetcher=True,

@ -1,6 +1,6 @@
from .constants import * from .constants import *
from .config import resolve_data_config from .config import resolve_data_config
from .dataset import Dataset, DatasetTar, AugMixDataset from .dataset import ImageDataset, AugMixDataset
from .transforms import * from .transforms import *
from .loader import create_loader from .loader import create_loader
from .transforms_factory import create_transform from .transforms_factory import create_transform

@ -2,177 +2,49 @@
Hacked together by / Copyright 2020 Ross Wightman Hacked together by / Copyright 2020 Ross Wightman
""" """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.utils.data as data import torch.utils.data as data
import os import os
import re
import torch import torch
import tarfile
from PIL import Image
IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg']
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
labels = []
filenames = []
for root, subdirs, files in os.walk(folder, topdown=False):
rel_path = os.path.relpath(root, folder) if (root != folder) else ''
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
for f in files:
base, ext = os.path.splitext(f)
if ext.lower() in types:
filenames.append(os.path.join(root, f))
labels.append(label)
if class_to_idx is None:
# building class index
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx]
if sort:
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
return images_and_targets, class_to_idx
def load_class_map(filename, root=''):
class_map_path = filename
if not os.path.exists(class_map_path):
class_map_path = os.path.join(root, filename)
assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % filename
class_map_ext = os.path.splitext(filename)[-1].lower()
if class_map_ext == '.txt':
with open(class_map_path) as f:
class_to_idx = {v.strip(): k for k, v in enumerate(f)}
else:
assert False, 'Unsupported class map extension'
return class_to_idx
from .parsers import ParserImageFolder, ParserImageTar
class Dataset(data.Dataset):
class ImageDataset(data.Dataset):
def __init__( def __init__(
self, self,
root, img_root,
parser=None,
class_map='',
load_bytes=False, load_bytes=False,
transform=None, transform=None,
class_map=''): ):
self.img_root = img_root
class_to_idx = None if parser is None:
if class_map: if os.path.isfile(img_root) and os.path.splitext(img_root)[1] == '.tar':
class_to_idx = load_class_map(class_map, root) parser = ParserImageTar(img_root, load_bytes=load_bytes, class_map=class_map)
images, class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx) else:
if len(images) == 0: parser = ParserImageFolder(img_root, load_bytes=load_bytes, class_map=class_map)
raise RuntimeError(f'Found 0 images in subfolders of {root}. ' self.parser = parser
f'Supported image extensions are {", ".join(IMG_EXTENSIONS)}')
self.root = root
self.samples = images
self.imgs = self.samples # torchvision ImageFolder compat
self.class_to_idx = class_to_idx
self.load_bytes = load_bytes self.load_bytes = load_bytes
self.transform = transform self.transform = transform
def __getitem__(self, index): def __getitem__(self, index):
path, target = self.samples[index] img, target = self.parser[index]
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
if self.transform is not None: if self.transform is not None:
img = self.transform(img) img = self.transform(img)
if target is None: if target is None:
target = torch.zeros(1).long() target = torch.tensor(-1, dtype=torch.long)
return img, target return img, target
def __len__(self): def __len__(self):
return len(self.samples) return len(self.parser)
def filename(self, index, basename=False, absolute=False): def filename(self, index, basename=False, absolute=False):
filename = self.samples[index][0] return self.parser.filename(index, basename, absolute)
if basename:
filename = os.path.basename(filename)
elif not absolute:
filename = os.path.relpath(filename, self.root)
return filename
def filenames(self, basename=False, absolute=False): def filenames(self, basename=False, absolute=False):
fn = lambda x: x return self.parser.filenames(basename, absolute)
if basename:
fn = os.path.basename
elif not absolute:
fn = lambda x: os.path.relpath(x, self.root)
return [fn(x[0]) for x in self.samples]
def _extract_tar_info(tarfile, class_to_idx=None, sort=True):
files = []
labels = []
for ti in tarfile.getmembers():
if not ti.isfile():
continue
dirname, basename = os.path.split(ti.path)
label = os.path.basename(dirname)
ext = os.path.splitext(basename)[1]
if ext.lower() in IMG_EXTENSIONS:
files.append(ti)
labels.append(label)
if class_to_idx is None:
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
tarinfo_and_targets = [(f, class_to_idx[l]) for f, l in zip(files, labels) if l in class_to_idx]
if sort:
tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path))
return tarinfo_and_targets, class_to_idx
class DatasetTar(data.Dataset):
def __init__(self, root, load_bytes=False, transform=None, class_map=''):
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
assert os.path.isfile(root)
self.root = root
with tarfile.open(root) as tf: # cannot keep this open across processes, reopen later
self.samples, self.class_to_idx = _extract_tar_info(tf, class_to_idx)
self.imgs = self.samples
self.tarfile = None # lazy init in __getitem__
self.load_bytes = load_bytes
self.transform = transform
def __getitem__(self, index):
if self.tarfile is None:
self.tarfile = tarfile.open(self.root)
tarinfo, target = self.samples[index]
iob = self.tarfile.extractfile(tarinfo)
img = iob.read() if self.load_bytes else Image.open(iob).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if target is None:
target = torch.zeros(1).long()
return img, target
def __len__(self):
return len(self.samples)
def filename(self, index, basename=False):
filename = self.samples[index][0].name
if basename:
filename = os.path.basename(filename)
return filename
def filenames(self, basename=False):
fn = os.path.basename if basename else lambda x: x
return [fn(x[0].name) for x in self.samples]
class AugMixDataset(torch.utils.data.Dataset): class AugMixDataset(torch.utils.data.Dataset):

@ -0,0 +1,4 @@
from .parser import Parser
from .parser_image_folder import ParserImageFolder
from .parser_image_tar import ParserImageTar
from .parser_in21k_tar import ParserIn21kTar

@ -0,0 +1,15 @@
def load_class_map(filename, root=''):
class_map_path = filename
if not os.path.exists(class_map_path):
class_map_path = os.path.join(root, filename)
assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % filename
class_map_ext = os.path.splitext(filename)[-1].lower()
if class_map_ext == '.txt':
with open(class_map_path) as f:
class_to_idx = {v.strip(): k for k, v in enumerate(f)}
else:
assert False, 'Unsupported class map extension'
return class_to_idx

@ -0,0 +1,3 @@
IMG_EXTENSIONS = ('.png', '.jpg', '.jpeg')

@ -0,0 +1,17 @@
from abc import abstractmethod
class Parser:
def __init__(self):
pass
@abstractmethod
def _filename(self, index, basename=False, absolute=False):
pass
def filename(self, index, basename=False, absolute=False):
return self._filename(index, basename=basename, absolute=absolute)
def filenames(self, basename=False, absolute=False):
return [self._filename(index, basename=basename, absolute=absolute) for index in range(len(self))]

@ -0,0 +1,69 @@
import os
import io
import torch
from PIL import Image
from timm.utils.misc import natural_key
from .parser import Parser
from .class_map import load_class_map
from .constants import IMG_EXTENSIONS
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
labels = []
filenames = []
for root, subdirs, files in os.walk(folder, topdown=False):
rel_path = os.path.relpath(root, folder) if (root != folder) else ''
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
for f in files:
base, ext = os.path.splitext(f)
if ext.lower() in types:
filenames.append(os.path.join(root, f))
labels.append(label)
if class_to_idx is None:
# building class index
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx]
if sort:
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
return images_and_targets, class_to_idx
class ParserImageFolder(Parser):
def __init__(
self,
root,
load_bytes=False,
class_map=''):
super().__init__()
self.root = root
self.load_bytes = load_bytes
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
self.samples, self.class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx)
if len(self.samples) == 0:
raise RuntimeError(f'Found 0 images in subfolders of {root}. '
f'Supported image extensions are {", ".join(IMG_EXTENSIONS)}')
def __getitem__(self, index):
path, target = self.samples[index]
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
return img, target
def __len__(self):
return len(self.samples)
def _filename(self, index, basename=False, absolute=False):
filename = self.samples[index][0]
if basename:
filename = os.path.basename(filename)
elif not absolute:
filename = os.path.relpath(filename, self.root)
return filename

@ -0,0 +1,66 @@
import os
import io
import torch
import tarfile
from .parser import Parser
from .class_map import load_class_map
from .constants import IMG_EXTENSIONS
from PIL import Image
from timm.utils.misc import natural_key
def extract_tar_info(tarfile, class_to_idx=None, sort=True):
files = []
labels = []
for ti in tarfile.getmembers():
if not ti.isfile():
continue
dirname, basename = os.path.split(ti.path)
label = os.path.basename(dirname)
ext = os.path.splitext(basename)[1]
if ext.lower() in IMG_EXTENSIONS:
files.append(ti)
labels.append(label)
if class_to_idx is None:
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
tarinfo_and_targets = [(f, class_to_idx[l]) for f, l in zip(files, labels) if l in class_to_idx]
if sort:
tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path))
return tarinfo_and_targets, class_to_idx
class ParserImageTar(Parser):
def __init__(self, root, load_bytes=False, class_map=''):
super().__init__()
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
assert os.path.isfile(root)
self.root = root
with tarfile.open(root) as tf: # cannot keep this open across processes, reopen later
self.samples, self.class_to_idx = extract_tar_info(tf, class_to_idx)
self.imgs = self.samples
self.tarfile = None # lazy init in __getitem__
self.load_bytes = load_bytes
def __getitem__(self, index):
if self.tarfile is None:
self.tarfile = tarfile.open(self.root)
tarinfo, target = self.samples[index]
iob = self.tarfile.extractfile(tarinfo)
img = iob.read() if self.load_bytes else Image.open(iob).convert('RGB')
return img, target
def __len__(self):
return len(self.samples)
def _filename(self, index, basename=False, absolute=False):
filename = self.samples[index][0].name
if basename:
filename = os.path.basename(filename)
return filename

@ -0,0 +1,104 @@
import os
import io
import re
import torch
import tarfile
import pickle
from glob import glob
import numpy as np
import torch.utils.data as data
from timm.utils.misc import natural_key
from .constants import IMG_EXTENSIONS
def load_class_map(filename, root=''):
class_map_path = filename
if not os.path.exists(class_map_path):
class_map_path = os.path.join(root, filename)
assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % filename
class_map_ext = os.path.splitext(filename)[-1].lower()
if class_map_ext == '.txt':
with open(class_map_path) as f:
class_to_idx = {v.strip(): k for k, v in enumerate(f)}
else:
assert False, 'Unsupported class map extension'
return class_to_idx
class ParserIn21kTar(data.Dataset):
CACHE_FILENAME = 'class_info.pickle'
def __init__(self, root, class_map=''):
class_to_idx = None
if class_map:
class_to_idx = load_class_map(class_map, root)
assert os.path.isdir(root)
self.root = root
tar_filenames = glob(os.path.join(self.root, '*.tar'), recursive=True)
assert len(tar_filenames)
num_tars = len(tar_filenames)
if os.path.exists(self.CACHE_FILENAME):
with open(self.CACHE_FILENAME, 'rb') as pf:
class_info = pickle.load(pf)
else:
class_info = {}
for fi, fn in enumerate(tar_filenames):
if fi % 1000 == 0:
print(f'DEBUG: tar {fi}/{num_tars}')
# cannot keep this open across processes, reopen later
name = os.path.splitext(os.path.basename(fn))[0]
img_tarinfos = []
with tarfile.open(fn) as tf:
img_tarinfos.extend(tf.getmembers())
class_info[name] = dict(img_tarinfos=img_tarinfos)
print(f'DEBUG: {len(img_tarinfos)} images for synset {name}')
class_info = {k: v for k, v in sorted(class_info.items())}
with open('class_info.pickle', 'wb') as pf:
pickle.dump(class_info, pf, protocol=pickle.HIGHEST_PROTOCOL)
if class_to_idx is not None:
out_dict = {}
for k, v in class_info.items():
if k in class_to_idx:
class_idx = class_to_idx[k]
v['class_idx'] = class_idx
out_dict[k] = v
class_info = {k: v for k, v in sorted(out_dict.items(), key=lambda x: x[1]['class_idx'])}
else:
for i, (k, v) in enumerate(class_info.items()):
v['class_idx'] = i
self.img_infos = []
self.targets = []
self.tarnames = []
for k, v in class_info.items():
num_samples = len(v['img_tarinfos'])
self.img_infos.extend(v['img_tarinfos'])
self.targets.extend([v['class_idx']] * num_samples)
self.tarnames.extend([k] * num_samples)
self.targets = np.array(self.targets) # separate, uniform np array are more memory efficient
self.tarnames = np.array(self.tarnames)
self.tarfiles = {} # to open lazily
del class_info
def __len__(self):
return len(self.img_infos)
def __getitem__(self, idx):
img_tarinfo = self.img_infos[idx]
name = self.tarnames[idx]
tf = self.tarfiles.setdefault(name, tarfile.open(os.path.join(self.root, name + '.tar')))
img_bytes = tf.extractfile(img_tarinfo)
if self.targets:
target = self.targets[idx]
else:
target = None
return img_bytes, target

@ -28,7 +28,7 @@ import torch.nn as nn
import torchvision.utils import torchvision.utils
from torch.nn.parallel import DistributedDataParallel as NativeDDP from torch.nn.parallel import DistributedDataParallel as NativeDDP
from timm.data import Dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from timm.data import ImageDataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from timm.models import create_model, resume_checkpoint, load_checkpoint, convert_splitbn_model from timm.models import create_model, resume_checkpoint, load_checkpoint, convert_splitbn_model
from timm.utils import * from timm.utils import *
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
@ -275,7 +275,7 @@ def _parse_args():
def main(): def main():
setup_default_logging() setup_default_logging(log_path='./train.log')
args, args_text = _parse_args() args, args_text = _parse_args()
args.prefetcher = not args.no_prefetcher args.prefetcher = not args.no_prefetcher
@ -330,6 +330,7 @@ def main():
scriptable=args.torchscript, scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint) checkpoint_path=args.initial_checkpoint)
print(model)
if args.local_rank == 0: if args.local_rank == 0:
_logger.info('Model %s created, param count: %d' % _logger.info('Model %s created, param count: %d' %
(args.model, sum([m.numel() for m in model.parameters()]))) (args.model, sum([m.numel() for m in model.parameters()])))
@ -439,7 +440,7 @@ def main():
if not os.path.exists(train_dir): if not os.path.exists(train_dir):
_logger.error('Training folder does not exist at: {}'.format(train_dir)) _logger.error('Training folder does not exist at: {}'.format(train_dir))
exit(1) exit(1)
dataset_train = Dataset(train_dir) dataset_train = ImageDataset(train_dir)
eval_dir = os.path.join(args.data, 'val') eval_dir = os.path.join(args.data, 'val')
if not os.path.isdir(eval_dir): if not os.path.isdir(eval_dir):
@ -447,7 +448,7 @@ def main():
if not os.path.isdir(eval_dir): if not os.path.isdir(eval_dir):
_logger.error('Validation folder does not exist at: {}'.format(eval_dir)) _logger.error('Validation folder does not exist at: {}'.format(eval_dir))
exit(1) exit(1)
dataset_eval = Dataset(eval_dir) dataset_eval = ImageDataset(eval_dir)
# setup mixup / cutmix # setup mixup / cutmix
collate_fn = None collate_fn = None

@ -20,7 +20,7 @@ from collections import OrderedDict
from contextlib import suppress from contextlib import suppress
from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models
from timm.data import Dataset, DatasetTar, create_loader, resolve_data_config, RealLabelsImagenet from timm.data import ImageDataset, create_loader, resolve_data_config, RealLabelsImagenet
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_legacy from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_legacy
has_apex = False has_apex = False
@ -157,10 +157,7 @@ def validate(args):
criterion = nn.CrossEntropyLoss().cuda() criterion = nn.CrossEntropyLoss().cuda()
if os.path.splitext(args.data)[1] == '.tar' and os.path.isfile(args.data): dataset = ImageDataset(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
dataset = DatasetTar(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
else:
dataset = Dataset(args.data, load_bytes=args.tf_preprocessing, class_map=args.class_map)
if args.valid_labels: if args.valid_labels:
with open(args.valid_labels, 'r') as f: with open(args.valid_labels, 'r') as f:

Loading…
Cancel
Save