add support for native torch AMP in torch 1.6

pull/227/head
datamining99 4 years ago
parent 470220b1f4
commit d98967ed5d

@ -25,9 +25,12 @@ try:
from apex.parallel import convert_syncbn_model
has_apex = True
except ImportError:
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
has_apex = False
from timm.data import Dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from timm.models import create_model, resume_checkpoint, convert_splitbn_model
from timm.utils import *
@ -327,6 +330,10 @@ def main():
if has_apex and args.amp:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
use_amp = True
elif args.amp:
_logger.info('Using torch AMP. Install NVIDIA Apex for Apex AMP.')
scaler = torch.cuda.amp.GradScaler()
use_amp = True
if args.local_rank == 0:
_logger.info('NVIDIA APEX {}. AMP {}.'.format(
'installed' if has_apex else 'not installed', 'on' if use_amp else 'off'))
@ -506,7 +513,8 @@ def main():
train_metrics = train_epoch(
epoch, model, loader_train, optimizer, train_loss_fn, args,
lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
use_amp=use_amp, model_ema=model_ema, mixup_fn=mixup_fn)
use_amp=use_amp, has_apex=has_apex, scaler = scaler,
model_ema=model_ema, mixup_fn=mixup_fn)
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
if args.local_rank == 0:
@ -546,7 +554,8 @@ def main():
def train_epoch(
epoch, model, loader, optimizer, loss_fn, args,
lr_scheduler=None, saver=None, output_dir='', use_amp=False, model_ema=None, mixup_fn=None):
lr_scheduler=None, saver=None, output_dir='', use_amp=False,
has_apex=False, scaler = None, model_ema=None, mixup_fn=None):
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
if args.prefetcher and loader.mixup_enabled:
@ -570,20 +579,32 @@ def train_epoch(
input, target = input.cuda(), target.cuda()
if mixup_fn is not None:
input, target = mixup_fn(input, target)
if not has_apex and use_amp:
with torch.cuda.amp.autocast():
output = model(input)
loss = loss_fn(output, target)
else:
output = model(input)
loss = loss_fn(output, target)
output = model(input)
loss = loss_fn(output, target)
if not args.distributed:
losses_m.update(loss.item(), input.size(0))
optimizer.zero_grad()
if use_amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if has_apex:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
scaler.scale(loss).backward()
else:
loss.backward()
optimizer.step()
if not has_apex and use_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
torch.cuda.synchronize()
if model_ema is not None:

Loading…
Cancel
Save