Merge branch 'alexander-soare-freeze-functionality'

pull/910/head
Ross Wightman 3 years ago
commit d80653cb99

@ -0,0 +1,57 @@
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
import timm
from timm.utils.model import freeze, unfreeze
def test_freeze_unfreeze():
model = timm.create_model('resnet18')
# Freeze all
freeze(model)
# Check top level module
assert model.fc.weight.requires_grad == False
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == False
# Check BN
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
# Unfreeze all
unfreeze(model)
# Check top level module
assert model.fc.weight.requires_grad == True
# Check submodule
assert model.layer1[0].conv1.weight.requires_grad == True
# Check BN
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# Freeze some
freeze(model, ['layer1', 'layer2.0'])
# Check frozen
assert model.layer1[0].conv1.weight.requires_grad == False
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == False
# Check not frozen
assert model.layer3[0].conv1.weight.requires_grad == True
assert isinstance(model.layer3[0].bn1, BatchNorm2d)
assert model.layer2[1].conv1.weight.requires_grad == True
# Unfreeze some
unfreeze(model, ['layer1', 'layer2.0'])
# Check not frozen
assert model.layer1[0].conv1.weight.requires_grad == True
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
assert model.layer2[0].conv1.weight.requires_grad == True
# Freeze/unfreeze BN
# From root
freeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model, ['layer1.0.bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)
# From direct parent
freeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d)
unfreeze(model.layer1[0], ['bn1'])
assert isinstance(model.layer1[0].bn1, BatchNorm2d)

@ -7,7 +7,7 @@ from .jit import set_jit_legacy
from .log import setup_default_logging, FormatterNoInfo
from .metrics import AverageMeter, accuracy
from .misc import natural_key, add_bool_arg
from .model import unwrap_model, get_state_dict
from .model import unwrap_model, get_state_dict, freeze, unfreeze
from .model_ema import ModelEma, ModelEmaV2
from .random import random_seed
from .summary import update_summary, get_outdir

@ -2,9 +2,15 @@
Hacked together by / Copyright 2020 Ross Wightman
"""
from .model_ema import ModelEma
from logging import root
from typing import Sequence
import torch
import fnmatch
from torchvision.ops.misc import FrozenBatchNorm2d
from .model_ema import ModelEma
def unwrap_model(model):
if isinstance(model, ModelEma):
@ -90,3 +96,175 @@ def extract_spp_stats(model,
_ = model(x)
return hook.stats
def freeze_batch_norm_2d(module):
"""
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
returned. Otherwise, the module is walked recursively and submodules are converted in place.
Args:
module (torch.nn.Module): Any PyTorch module.
Returns:
torch.nn.Module: Resulting module
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
"""
res = module
if isinstance(module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
res = FrozenBatchNorm2d(module.num_features)
res.num_features = module.num_features
res.affine = module.affine
if module.affine:
res.weight.data = module.weight.data.clone().detach()
res.bias.data = module.bias.data.clone().detach()
res.running_mean.data = module.running_mean.data
res.running_var.data = module.running_var.data
res.eps = module.eps
else:
for name, child in module.named_children():
new_child = freeze_batch_norm_2d(child)
if new_child is not child:
res.add_module(name, new_child)
return res
def unfreeze_batch_norm_2d(module):
"""
Converts all `FrozenBatchNorm2d` layers of provided module into `BatchNorm2d`. If `module` is itself and instance
of `FrozenBatchNorm2d`, it is converted into `BatchNorm2d` and returned. Otherwise, the module is walked
recursively and submodules are converted in place.
Args:
module (torch.nn.Module): Any PyTorch module.
Returns:
torch.nn.Module: Resulting module
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
"""
res = module
if isinstance(module, FrozenBatchNorm2d):
res = torch.nn.BatchNorm2d(module.num_features)
if module.affine:
res.weight.data = module.weight.data.clone().detach()
res.bias.data = module.bias.data.clone().detach()
res.running_mean.data = module.running_mean.data
res.running_var.data = module.running_var.data
res.eps = module.eps
else:
for name, child in module.named_children():
new_child = unfreeze_batch_norm_2d(child)
if new_child is not child:
res.add_module(name, new_child)
return res
def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True, mode='freeze'):
"""
Freeze or unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is
done in place.
Args:
root_module (nn.Module, optional): Root module relative to which the `submodules` are referenced.
submodules (list[str]): List of modules for which the parameters will be (un)frozen. They are to be provided as
named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list
means that the whole root module will be (un)frozen. Defaults to []
include_bn_running_stats (bool): Whether to also (un)freeze the running statistics of batch norm 2d layers.
Defaults to `True`.
mode (bool): Whether to freeze ("freeze") or unfreeze ("unfreeze"). Defaults to `"freeze"`.
"""
assert mode in ["freeze", "unfreeze"], '`mode` must be one of "freeze" or "unfreeze"'
if isinstance(root_module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
# Raise assertion here because we can't convert it in place
raise AssertionError(
"You have provided a batch norm layer as the `root module`. Please use "
"`timm.utils.model.freeze_batch_norm_2d` or `timm.utils.model.unfreeze_batch_norm_2d` instead.")
if isinstance(submodules, str):
submodules = [submodules]
named_modules = submodules
submodules = [root_module.get_submodule(m) for m in submodules]
if not(len(submodules)):
named_modules, submodules = list(zip(*root_module.named_children()))
for n, m in zip(named_modules, submodules):
# (Un)freeze parameters
for p in m.parameters():
p.requires_grad = False if mode == 'freeze' else True
if include_bn_running_stats:
# Helper to add submodule specified as a named_module
def _add_submodule(module, name, submodule):
split = name.rsplit('.', 1)
if len(split) > 1:
module.get_submodule(split[0]).add_module(split[1], submodule)
else:
module.add_module(name, submodule)
# Freeze batch norm
if mode == 'freeze':
res = freeze_batch_norm_2d(m)
# It's possible that `m` is a type of BatchNorm in itself, in which case `unfreeze_batch_norm_2d` won't
# convert it in place, but will return the converted result. In this case `res` holds the converted
# result and we may try to re-assign the named module
if isinstance(m, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
_add_submodule(root_module, n, res)
# Unfreeze batch norm
else:
res = unfreeze_batch_norm_2d(m)
# Ditto. See note above in mode == 'freeze' branch
if isinstance(m, FrozenBatchNorm2d):
_add_submodule(root_module, n, res)
def freeze(root_module, submodules=[], include_bn_running_stats=True):
"""
Freeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place.
Args:
root_module (nn.Module): Root module relative to which `submodules` are referenced.
submodules (list[str]): List of modules for which the parameters will be frozen. They are to be provided as
named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list
means that the whole root module will be frozen. Defaults to `[]`.
include_bn_running_stats (bool): Whether to also freeze the running statistics of `BatchNorm2d` and
`SyncBatchNorm` layers. These will be converted to `FrozenBatchNorm2d` in place. Hint: During fine tuning,
it's good practice to freeze batch norm stats. And note that these are different to the affine parameters
which are just normal PyTorch parameters. Defaults to `True`.
Hint: If you want to freeze batch norm ONLY, use `timm.utils.model.freeze_batch_norm_2d`.
Examples::
>>> model = timm.create_model('resnet18')
>>> # Freeze up to and including layer2
>>> submodules = [n for n, _ in model.named_children()]
>>> print(submodules)
['conv1', 'bn1', 'act1', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'global_pool', 'fc']
>>> freeze(model, submodules[:submodules.index('layer2') + 1])
>>> # Check for yourself that it works as expected
>>> print(model.layer2[0].conv1.weight.requires_grad)
False
>>> print(model.layer3[0].conv1.weight.requires_grad)
True
>>> # Unfreeze
>>> unfreeze(model)
"""
_freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="freeze")
def unfreeze(root_module, submodules=[], include_bn_running_stats=True):
"""
Unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place.
Args:
root_module (nn.Module): Root module relative to which `submodules` are referenced.
submodules (list[str]): List of submodules for which the parameters will be (un)frozen. They are to be provided
as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty
list means that the whole root module will be unfrozen. Defaults to `[]`.
include_bn_running_stats (bool): Whether to also unfreeze the running statistics of `FrozenBatchNorm2d` layers.
These will be converted to `BatchNorm2d` in place. Defaults to `True`.
See example in docstring for `freeze`.
"""
_freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="unfreeze")
Loading…
Cancel
Save