Merge pull request #1112 from ayasyrev/sched_noise_dup_code

sched noise dup code remove
pull/1014/head
Ross Wightman 3 years ago committed by GitHub
commit d757fecaac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -43,7 +43,7 @@ class PlateauLRScheduler(Scheduler):
min_lr=lr_min
)
self.noise_range = noise_range_t
self.noise_range_t = noise_range_t
self.noise_pct = noise_pct
self.noise_type = noise_type
self.noise_std = noise_std
@ -82,25 +82,12 @@ class PlateauLRScheduler(Scheduler):
self.lr_scheduler.step(metric, epoch) # step the base scheduler
if self.noise_range is not None:
if isinstance(self.noise_range, (list, tuple)):
apply_noise = self.noise_range[0] <= epoch < self.noise_range[1]
else:
apply_noise = epoch >= self.noise_range
if apply_noise:
if self._is_apply_noise(epoch):
self._apply_noise(epoch)
def _apply_noise(self, epoch):
g = torch.Generator()
g.manual_seed(self.noise_seed + epoch)
if self.noise_type == 'normal':
while True:
# resample if noise out of percent limit, brute force but shouldn't spin much
noise = torch.randn(1, generator=g).item()
if abs(noise) < self.noise_pct:
break
else:
noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct
noise = self._calculate_noise(epoch)
# apply the noise on top of previous LR, cache the old value so we can restore for normal
# stepping of base scheduler

@ -85,12 +85,21 @@ class Scheduler:
param_group[self.param_group_field] = value
def _add_noise(self, lrs, t):
if self._is_apply_noise(t):
noise = self._calculate_noise(t)
lrs = [v + v * noise for v in lrs]
return lrs
def _is_apply_noise(self, t) -> bool:
"""Return True if scheduler in noise range."""
if self.noise_range_t is not None:
if isinstance(self.noise_range_t, (list, tuple)):
apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1]
else:
apply_noise = t >= self.noise_range_t
if apply_noise:
return apply_noise
def _calculate_noise(self, t) -> float:
g = torch.Generator()
g.manual_seed(self.noise_seed + t)
if self.noise_type == 'normal':
@ -98,8 +107,7 @@ class Scheduler:
# resample if noise out of percent limit, brute force but shouldn't spin much
noise = torch.randn(1, generator=g).item()
if abs(noise) < self.noise_pct:
break
return noise
else:
noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct
lrs = [v + v * noise for v in lrs]
return lrs
return noise

Loading…
Cancel
Save