|
|
@ -49,7 +49,19 @@ class eca_layer(nn.Module):
|
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
|
|
|
|
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
# feature descriptor on the global spatial information
|
|
|
|
|
|
|
|
y = self.avg_pool(x)
|
|
|
|
|
|
|
|
# reshape for convolution
|
|
|
|
|
|
|
|
y = y.view(x.shape[0], 1, -1)
|
|
|
|
|
|
|
|
# Two different branches of ECA module
|
|
|
|
|
|
|
|
y = self.conv(y)
|
|
|
|
|
|
|
|
# Multi-scale information fusion
|
|
|
|
|
|
|
|
y = self.sigmoid(y.view(x.shape[0], -1, 1, 1))
|
|
|
|
|
|
|
|
return x * y.expand_as(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'''original implementation
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
# x: input features with shape [b, c, h, w]
|
|
|
|
# x: input features with shape [b, c, h, w]
|
|
|
|
b, c, h, w = x.size()
|
|
|
|
b, c, h, w = x.size()
|
|
|
@ -62,8 +74,10 @@ class eca_layer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
# Multi-scale information fusion
|
|
|
|
# Multi-scale information fusion
|
|
|
|
y = self.sigmoid(y)
|
|
|
|
y = self.sigmoid(y)
|
|
|
|
|
|
|
|
|
|
|
|
return x * y.expand_as(x)
|
|
|
|
return x * y.expand_as(x)
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ceca_layer(nn.Module):
|
|
|
|
class ceca_layer(nn.Module):
|
|
|
|
"""Constructs a circular ECA module.
|
|
|
|
"""Constructs a circular ECA module.
|
|
|
@ -75,7 +89,6 @@ class ceca_layer(nn.Module):
|
|
|
|
(accuracy, robustness), without signficantly impacting resource metrics
|
|
|
|
(accuracy, robustness), without signficantly impacting resource metrics
|
|
|
|
(parameter size, throughput,latency, etc)
|
|
|
|
(parameter size, throughput,latency, etc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
channel: Number of channels of the input feature map
|
|
|
|
channel: Number of channels of the input feature map
|
|
|
|
k_size: Adaptive selection of kernel size
|
|
|
|
k_size: Adaptive selection of kernel size
|
|
|
@ -92,19 +105,16 @@ class ceca_layer(nn.Module):
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
# x: input features with shape [b, c, h, w]
|
|
|
|
|
|
|
|
b, c, h, w = x.size()
|
|
|
|
|
|
|
|
# feature descriptor on the global spatial information
|
|
|
|
# feature descriptor on the global spatial information
|
|
|
|
y = self.avg_pool(x)
|
|
|
|
y = self.avg_pool(x)
|
|
|
|
|
|
|
|
|
|
|
|
#manually implement circular padding
|
|
|
|
#manually implement circular padding, F.pad does not seemed to be bugged
|
|
|
|
y = torch.cat((y[:,:self.padding,:,:], y, y[:,-self.padding:,:,:]),dim=1)
|
|
|
|
y = F.pad(y.view(x.shape[0],1,-1),(self.padding,self.padding),mode='circular')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Two different branches of ECA module
|
|
|
|
# Two different branches of ECA module
|
|
|
|
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
|
|
|
y = self.conv(y)
|
|
|
|
|
|
|
|
|
|
|
|
# Multi-scale information fusion
|
|
|
|
# Multi-scale information fusion
|
|
|
|
y = self.sigmoid(y)
|
|
|
|
y = self.sigmoid(y.view(x.shape[0], -1, 1, 1))
|
|
|
|
|
|
|
|
|
|
|
|
return x * y.expand_as(x)
|
|
|
|
return x * y.expand_as(x)
|
|
|
|