Merge branch 'hf-save-and-push' of https://github.com/nateraw/pytorch-image-models into nateraw-hf-save-and-push

pull/1007/head
Ross Wightman 3 years ago
commit 8a83c41d7b

@ -11,11 +11,11 @@ from typing import Any, Callable, Optional, Tuple
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet
from .fx_features import FeatureGraphNet
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf, load_state_dict_from_url
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf
from .layers import Conv2dSame, Linear

@ -2,10 +2,11 @@ import json
import logging
import os
from functools import partial
from typing import Union, Optional
from pathlib import Path
from typing import Union
import torch
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX
from torch.hub import HASH_REGEX, download_url_to_file, urlparse
try:
from torch.hub import get_dir
except ImportError:
@ -13,8 +14,7 @@ except ImportError:
from timm import __version__
try:
from huggingface_hub import hf_hub_url
from huggingface_hub import cached_download
from huggingface_hub import HfApi, HfFolder, Repository, cached_download, hf_hub_url
cached_download = partial(cached_download, library_name="timm", library_version=__version__)
except ImportError:
hf_hub_url = None
@ -94,3 +94,77 @@ def load_state_dict_from_hf(model_id: str):
cached_file = _download_from_hf(model_id, 'pytorch_model.bin')
state_dict = torch.load(cached_file, map_location='cpu')
return state_dict
def save_pretrained_for_hf(model, save_directory, **config_kwargs):
assert has_hf_hub(True)
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True, parents=True)
weights_path = save_directory / 'pytorch_model.bin'
torch.save(model.state_dict(), weights_path)
config_path = save_directory / 'config.json'
config = model.default_cfg
config['num_classes'] = config_kwargs.pop('num_classes', model.num_classes)
config['num_features'] = config_kwargs.pop('num_features', model.num_features)
config['labels'] = config_kwargs.pop('labels', [f"LABEL_{i}" for i in range(config['num_classes'])])
config.update(config_kwargs)
with config_path.open('w') as f:
json.dump(config, f, indent=2)
def push_to_hf_hub(
model,
local_dir,
repo_namespace_or_url=None,
commit_message='Add model',
use_auth_token=True,
git_email=None,
git_user=None,
revision=None,
**config_kwargs
):
if repo_namespace_or_url:
repo_owner, repo_name = repo_namespace_or_url.rstrip('/').split('/')[-2:]
else:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise ValueError(
"You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and "
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
"token as the `use_auth_token` argument."
)
repo_owner = HfApi().whoami(token)['name']
repo_name = Path(local_dir).name
repo_url = f'https://huggingface.co/{repo_owner}/{repo_name}'
repo = Repository(
local_dir,
clone_from=repo_url,
use_auth_token=use_auth_token,
git_user=git_user,
git_email=git_email,
revision=revision,
)
# Prepare a default model card that includes the necessary tags to enable inference.
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_name}'
with repo.commit(commit_message):
# Save model weights and config.
save_pretrained_for_hf(model, repo.local_dir, **config_kwargs)
# Save a model card if it doesn't exist.
readme_path = Path(repo.local_dir) / 'README.md'
if not readme_path.exists():
readme_path.write_text(readme_text)
return repo.git_remote_url()

Loading…
Cancel
Save