|
|
@ -69,7 +69,7 @@ def drop_block_2d(
|
|
|
|
|
|
|
|
|
|
|
|
def drop_block_fast_2d(
|
|
|
|
def drop_block_fast_2d(
|
|
|
|
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
|
|
|
|
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
|
|
|
|
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
|
|
|
|
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False):
|
|
|
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
|
|
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
|
|
|
|
|
|
|
|
|
|
|
|
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
|
|
|
|
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
|
|
|
@ -81,24 +81,19 @@ def drop_block_fast_2d(
|
|
|
|
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
|
|
|
|
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
|
|
|
|
(W - block_size + 1) * (H - block_size + 1))
|
|
|
|
(W - block_size + 1) * (H - block_size + 1))
|
|
|
|
|
|
|
|
|
|
|
|
if batchwise:
|
|
|
|
block_mask = torch.empty_like(x).bernoulli_(gamma)
|
|
|
|
# one mask for whole batch, quite a bit faster
|
|
|
|
|
|
|
|
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
# mask per batch element
|
|
|
|
|
|
|
|
block_mask = torch.rand_like(x) < gamma
|
|
|
|
|
|
|
|
block_mask = F.max_pool2d(
|
|
|
|
block_mask = F.max_pool2d(
|
|
|
|
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
|
|
|
|
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
|
|
|
|
|
|
|
|
|
|
|
|
if with_noise:
|
|
|
|
if with_noise:
|
|
|
|
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
|
|
|
|
normal_noise = torch.empty_like(x).normal_()
|
|
|
|
if inplace:
|
|
|
|
if inplace:
|
|
|
|
x.mul_(1. - block_mask).add_(normal_noise * block_mask)
|
|
|
|
x.mul_(1. - block_mask).add_(normal_noise * block_mask)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
x = x * (1. - block_mask) + normal_noise * block_mask
|
|
|
|
x = x * (1. - block_mask) + normal_noise * block_mask
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
block_mask = 1 - block_mask
|
|
|
|
block_mask = 1 - block_mask
|
|
|
|
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype)
|
|
|
|
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)).to(dtype=x.dtype)
|
|
|
|
if inplace:
|
|
|
|
if inplace:
|
|
|
|
x.mul_(block_mask * normalize_scale)
|
|
|
|
x.mul_(block_mask * normalize_scale)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -131,13 +126,13 @@ class DropBlock2d(nn.Module):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
if self.fast:
|
|
|
|
if self.fast:
|
|
|
|
return drop_block_fast_2d(
|
|
|
|
return drop_block_fast_2d(
|
|
|
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
|
|
|
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return drop_block_2d(
|
|
|
|
return drop_block_2d(
|
|
|
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
|
|
|
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
|
|
|
|
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
@ -151,18 +146,19 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
keep_prob = 1 - drop_prob
|
|
|
|
keep_prob = 1 - drop_prob
|
|
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
|
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
|
|
random_tensor.floor_() # binarize
|
|
|
|
if keep_prob > 0.0 and scale_by_keep:
|
|
|
|
output = x.div(keep_prob) * random_tensor
|
|
|
|
random_tensor.div_(keep_prob)
|
|
|
|
return output
|
|
|
|
return x * random_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
|
|
class DropPath(nn.Module):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
|
|
def __init__(self, drop_prob=None, scale_by_keep=True):
|
|
|
|
super(DropPath, self).__init__()
|
|
|
|
super(DropPath, self).__init__()
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
|
|
|
|
self.scale_by_keep = scale_by_keep
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
|
|
|