Update metaformers.py

pull/1647/head
Fredo Guan 2 years ago
parent 7babbfa7a4
commit cd36989a60

@ -60,10 +60,7 @@ class Downsampling(nn.Module):
x = self.pre_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) x = self.pre_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
x = self.conv(x) x = self.conv(x)
x = self.post_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) x = self.post_norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
print(x[0][0][0][0])
return x return x
''' '''
class Downsampling(nn.Module): class Downsampling(nn.Module):
@ -494,10 +491,11 @@ class MetaFormer(nn.Module):
mlp_bias=False, mlp_bias=False,
norm_layers=partial(LayerNormGeneral, eps=1e-6, bias=False), norm_layers=partial(LayerNormGeneral, eps=1e-6, bias=False),
drop_path_rate=0., drop_path_rate=0.,
head_dropout=0.0, drop_rate=0.0,
layer_scale_init_values=None, layer_scale_init_values=None,
res_scale_init_values=[None, None, 1.0, 1.0], res_scale_init_values=[None, None, 1.0, 1.0],
output_norm=partial(nn.LayerNorm, eps=1e-6), output_norm=partial(nn.LayerNorm, eps=1e-6),
head_norm_first=False,
head_fn=nn.Linear, head_fn=nn.Linear,
global_pool = 'avg', global_pool = 'avg',
**kwargs, **kwargs,
@ -506,9 +504,8 @@ class MetaFormer(nn.Module):
self.num_classes = num_classes self.num_classes = num_classes
self.head_fn = head_fn self.head_fn = head_fn
self.num_features = dims[-1] self.num_features = dims[-1]
self.head_dropout = head_dropout self.drop_rate = drop_rate
self.output_norm = output_norm
if not isinstance(depths, (list, tuple)): if not isinstance(depths, (list, tuple)):
depths = [depths] # it means the model has only one stage depths = [depths] # it means the model has only one stage
if not isinstance(dims, (list, tuple)): if not isinstance(dims, (list, tuple)):
@ -586,15 +583,16 @@ class MetaFormer(nn.Module):
self.feature_info += [dict(num_chs=dims[i], reduction=2, module=f'stages.{i}')] self.feature_info += [dict(num_chs=dims[i], reduction=2, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages) self.stages = nn.Sequential(*stages)
self.norm = self.output_norm(self.num_features)
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
if head_dropout > 0.0:
self.head = self.head_fn(self.num_features, self.num_classes, head_dropout=self.head_dropout)
else:
self.head = self.head_fn(self.num_features, self.num_classes)
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
# otherwise pool -> norm -> fc, similar to ConvNeXt
self.norm_pre = output_norm(self.num_features) if head_norm_first else nn.Identity()
self.head = nn.Sequential(OrderedDict([
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
('norm', nn.Identity() if head_norm_first else output_norm(self.num_features)),
('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
('drop', nn.Dropout(self.drop_rate)),
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))
self.apply(self._init_weights) self.apply(self._init_weights)
@ -613,40 +611,23 @@ class MetaFormer(nn.Module):
return self.head.fc2 return self.head.fc2
def reset_classifier(self, num_classes=0, global_pool=None): def reset_classifier(self, num_classes=0, global_pool=None):
if global_pool is not None: if global_pool is not None:
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
if num_classes == 0:
self.head = nn.Identity()
self.norm = nn.Identity()
else:
self.norm = self.output_norm(self.num_features)
if self.head_dropout > 0.0:
self.head = self.head_fn(self.num_features, num_classes, head_dropout=self.head_dropout)
else:
self.head = self.head_fn(self.num_features, num_classes)
def forward_head(self, x, pre_logits: bool = False): def forward_head(self, x, pre_logits: bool = False):
if pre_logits: # NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :(
return x x = self.head.global_pool(x)
x = self.head.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
#x = self.global_pool(x) x = self.head.flatten(x)
#x = x.squeeze() x = self.head.drop(x)
#x = self.norm(x) return x if pre_logits else self.head.fc(x)
# (B, H, W, C) -> (B, C)
#x = self.head(x)
x=self.head(self.norm(x.mean([2, 3])))
return x
def forward_features(self, x): def forward_features(self, x):
x = self.patch_embed(x) x = self.patch_embed(x)
#x = self.stages(x) x = self.stages(x)
for i, stage in enumerate(self.stages): x = self.norm_pre(x)
x = stage(x)
return x return x
def forward(self, x): def forward(self, x):
@ -658,7 +639,6 @@ def checkpoint_filter_fn(state_dict, model):
import re import re
out_dict = {} out_dict = {}
for k, v in state_dict.items(): for k, v in state_dict.items():
'''
k = k.replace('proj', 'conv') k = k.replace('proj', 'conv')
k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k) k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k)
k = k.replace('network.1', 'downsample_layers.1') k = k.replace('network.1', 'downsample_layers.1')
@ -668,10 +648,11 @@ def checkpoint_filter_fn(state_dict, model):
k = k.replace('network.4', 'network.2') k = k.replace('network.4', 'network.2')
k = k.replace('network.6', 'network.3') k = k.replace('network.6', 'network.3')
k = k.replace('network', 'stages') k = k.replace('network', 'stages')
'''
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k)
k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k) k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k)
k = k.replace('stages.0.downsample', 'patch_embed') k = k.replace('stages.0.downsample', 'patch_embed')
k = re.sub(r'^head', 'head.fc', k)
k = re.sub(r'^norm', 'head.norm', k)
out_dict[k] = v out_dict[k] = v
return out_dict return out_dict

Loading…
Cancel
Save