Make sure reduction ratio in resnetrs is 0.25

pull/554/head
Aman Arora 4 years ago
parent 69f8c7123f
commit c7b40414bb

@ -334,7 +334,7 @@ class Bottleneck(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, **kwargs):
super(Bottleneck, self).__init__()
width = int(math.floor(planes * (base_width / 64)) * cardinality)
@ -357,7 +357,7 @@ class Bottleneck(nn.Module):
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
self.bn3 = norm_layer(outplanes)
self.se = create_attn(attn_layer, outplanes)
self.se = create_attn(attn_layer, outplanes, **kwargs)
self.act3 = act_layer(inplace=True)
self.downsample = downsample
@ -1093,7 +1093,7 @@ def ecaresnet50d(pretrained=False, **kwargs):
def resnetrs50(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs50', pretrained, **model_args)
@ -1101,7 +1101,7 @@ def resnetrs50(pretrained=False, **kwargs):
def resnetrs101(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs101', pretrained, **model_args)
@ -1109,7 +1109,7 @@ def resnetrs101(pretrained=False, **kwargs):
def resnetrs152(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs152', pretrained, **model_args)
@ -1117,7 +1117,7 @@ def resnetrs152(pretrained=False, **kwargs):
def resnetrs200(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs200', pretrained, **model_args)
@ -1125,7 +1125,7 @@ def resnetrs200(pretrained=False, **kwargs):
def resnetrs270(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs270', pretrained, **model_args)
@ -1134,7 +1134,7 @@ def resnetrs270(pretrained=False, **kwargs):
def resnetrs350(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs350', pretrained, **model_args)
@ -1142,7 +1142,7 @@ def resnetrs350(pretrained=False, **kwargs):
def resnetrs420(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se'), **kwargs)
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs420', pretrained, **model_args)

Loading…
Cancel
Save