Add dilation support to convnext, allows output_stride=8 and 16 use. Fix #1341

pull/1363/head
Ross Wightman 2 years ago
parent 5e7d47ca10
commit c5e0d1c700

@ -109,6 +109,7 @@ class ConvNeXtBlock(nn.Module):
dim,
dim_out=None,
stride=1,
dilation=1,
mlp_ratio=4,
conv_mlp=False,
conv_bias=True,
@ -124,7 +125,8 @@ class ConvNeXtBlock(nn.Module):
mlp_layer = ConvMlp if conv_mlp else Mlp
self.use_conv_mlp = conv_mlp
self.conv_dw = create_conv2d(dim, dim_out, kernel_size=7, stride=stride, depthwise=True, bias=conv_bias)
self.conv_dw = create_conv2d(
dim, dim_out, kernel_size=7, stride=stride, dilation=dilation, depthwise=True, bias=conv_bias)
self.norm = norm_layer(dim_out)
self.mlp = mlp_layer(dim_out, int(mlp_ratio * dim_out), act_layer=act_layer)
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None
@ -156,6 +158,7 @@ class ConvNeXtStage(nn.Module):
out_chs,
stride=2,
depth=2,
dilation=(1, 1),
drop_path_rates=None,
ls_init_value=1.0,
conv_mlp=False,
@ -166,10 +169,14 @@ class ConvNeXtStage(nn.Module):
super().__init__()
self.grad_checkpointing = False
if in_chs != out_chs or stride > 1:
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
self.downsample = nn.Sequential(
norm_layer(in_chs),
nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride, bias=conv_bias),
create_conv2d(
in_chs, out_chs, kernel_size=ds_ks, stride=stride,
dilation=dilation[0], padding=pad, bias=conv_bias),
)
in_chs = out_chs
else:
@ -181,6 +188,7 @@ class ConvNeXtStage(nn.Module):
stage_blocks.append(ConvNeXtBlock(
dim=in_chs,
dim_out=out_chs,
dilation=dilation[1],
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
@ -235,7 +243,7 @@ class ConvNeXt(nn.Module):
drop_path_rate=0.,
):
super().__init__()
assert output_stride == 32
assert output_stride in (8, 16, 32)
if norm_layer is None:
norm_layer = partial(LayerNorm2d, eps=1e-6)
norm_layer_cl = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6)
@ -263,22 +271,27 @@ class ConvNeXt(nn.Module):
padding=stem_kernel_size // 2, bias=conv_bias),
norm_layer(dims[0]),
)
prev_chs = dims[0]
curr_stride = stem_stride
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
prev_chs = dims[0]
curr_stride = stem_stride
dilation = 1
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if curr_stride == 2 or i > 0 else 1
# FIXME support dilation / output_stride
if curr_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
curr_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
out_chs = dims[i]
stages.append(ConvNeXtStage(
prev_chs,
out_chs,
stride=stride,
dilation=(first_dilation, dilation),
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,

Loading…
Cancel
Save