|
|
|
@ -100,10 +100,10 @@ default_cfgs = {
|
|
|
|
|
# hybrid models (weights ported from official Google JAX impl)
|
|
|
|
|
'vit_base_resnet50_224_in21k': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
|
|
|
|
|
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9),
|
|
|
|
|
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'),
|
|
|
|
|
'vit_base_resnet50_384': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
|
|
|
|
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
|
|
|
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'),
|
|
|
|
|
|
|
|
|
|
# hybrid models (my experiments)
|
|
|
|
|
'vit_small_resnet26d_224': _cfg(),
|
|
|
|
@ -256,11 +256,33 @@ class HybridEmbed(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
|
""" Vision Transformer
|
|
|
|
|
|
|
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
|
|
|
|
https://arxiv.org/abs/2010.11929
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
|
|
|
|
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
|
|
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None):
|
|
|
|
|
"""
|
|
|
|
|
Args:
|
|
|
|
|
img_size (int, tuple): input image size
|
|
|
|
|
patch_size (int, tuple): patch size
|
|
|
|
|
in_chans (int): number of input channels
|
|
|
|
|
num_classes (int): number of classes for classification head
|
|
|
|
|
embed_dim (int): embedding dimension
|
|
|
|
|
depth (int): depth of transformer
|
|
|
|
|
num_heads (int): number of attention heads
|
|
|
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
|
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
|
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
|
|
|
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
|
|
|
|
drop_rate (float): dropout rate
|
|
|
|
|
attn_drop_rate (float): attention dropout rate
|
|
|
|
|
drop_path_rate (float): stochastic depth rate
|
|
|
|
|
hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module
|
|
|
|
|
norm_layer: (nn.Module): normalization layer
|
|
|
|
|
"""
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
@ -346,8 +368,7 @@ class VisionTransformer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resize_pos_embed(posemb, posemb_new):
|
|
|
|
|
# Rescale the grid of position embeddings when loading from state_dict
|
|
|
|
|
# Adapted from
|
|
|
|
|
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
|
|
|
|
|
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
|
|
|
|
|
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
|
|
|
|
|
ntok_new = posemb_new.shape[1]
|
|
|
|
@ -363,22 +384,21 @@ def resize_pos_embed(posemb, posemb_new):
|
|
|
|
|
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
|
|
|
|
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
|
|
|
|
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
|
|
|
|
state_dict['pos_embed'] = posemb
|
|
|
|
|
return state_dict
|
|
|
|
|
return posemb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
|
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
|
|
|
|
out_dict = {}
|
|
|
|
|
if 'model' in state_dict:
|
|
|
|
|
# for deit models
|
|
|
|
|
# For deit models
|
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
|
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
|
|
|
|
|
# for old models that I trained prior to conv based patchification
|
|
|
|
|
# For old models that I trained prior to conv based patchification
|
|
|
|
|
v = v.reshape(model.patch_embed.proj.weight.shape)
|
|
|
|
|
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
|
|
|
|
|
# to resize pos embedding when using model at different size from pretrained weights
|
|
|
|
|
# To resize pos embedding when using model at different size from pretrained weights
|
|
|
|
|
v = resize_pos_embed(v, model.pos_embed)
|
|
|
|
|
out_dict[k] = v
|
|
|
|
|
return out_dict
|
|
|
|
@ -393,8 +413,9 @@ def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
|
|
|
|
img_size = kwargs.pop('img_size', default_img_size)
|
|
|
|
|
repr_size = kwargs.pop('representation_size', None)
|
|
|
|
|
if repr_size is not None and num_classes != default_num_classes:
|
|
|
|
|
# remove representation layer if fine-tuning
|
|
|
|
|
_logger.info("Removing representation layer for fine-tuning.")
|
|
|
|
|
# Remove representation layer if fine-tuning. This may not always be the desired action,
|
|
|
|
|
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
|
|
|
|
|
_logger.warning("Removing representation layer for fine-tuning.")
|
|
|
|
|
repr_size = None
|
|
|
|
|
|
|
|
|
|
model = VisionTransformer(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs)
|
|
|
|
@ -409,6 +430,7 @@ def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" My custom 'small' ViT model. Depth=8, heads=8= mlp_ratio=3."""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3.,
|
|
|
|
|
qkv_bias=False, norm_layer=nn.LayerNorm, **kwargs)
|
|
|
|
@ -421,6 +443,9 @@ def vit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -428,6 +453,8 @@ def vit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch32_224(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -435,6 +462,9 @@ def vit_base_patch32_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -442,6 +472,9 @@ def vit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch32_384(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
@ -451,6 +484,9 @@ def vit_base_patch32_384(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -458,6 +494,8 @@ def vit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_large_patch32_224(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -465,21 +503,29 @@ def vit_large_patch32_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_large_patch16_384(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
def vit_large_patch32_384(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch16_384_in21k(pretrained=False, **kwargs):
|
|
|
|
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
@ -488,6 +534,9 @@ def vit_base_patch16_384_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, representation_size=768, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
@ -496,22 +545,20 @@ def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @register_model
|
|
|
|
|
# def vit_large_patch16_384_in21k(pretrained=False, **kwargs):
|
|
|
|
|
# model_kwargs = dict(
|
|
|
|
|
# patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
|
# model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
# return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, representation_size=1024, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
@ -520,6 +567,10 @@ def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
NOTE: converted weights not currently available, too large for github release hosting.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, representation_size=1280, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
@ -528,9 +579,13 @@ def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
""" R50+ViT-B/16 hybrid model from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
|
backbone = ResNetV2(
|
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
|
layers=(3, 4, 9), num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
|
|
|
|
|
preact=False, stem_type='same', conv_layer=StdConv2dSame)
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone,
|
|
|
|
|
representation_size=768, **kwargs)
|
|
|
|
@ -540,9 +595,13 @@ def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_resnet50_384(pretrained=False, **kwargs):
|
|
|
|
|
""" R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
|
"""
|
|
|
|
|
# create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
|
|
|
|
|
backbone = ResNetV2(
|
|
|
|
|
layers=(3, 4, 9), preact=False, stem_type='same', conv_layer=StdConv2dSame, num_classes=0, global_pool='')
|
|
|
|
|
layers=(3, 4, 9), num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
|
|
|
|
|
preact=False, stem_type='same', conv_layer=StdConv2dSame)
|
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_resnet50_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -550,8 +609,9 @@ def vit_base_resnet50_384(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
|
""" Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
backbone = resnet26d(pretrained=pretrained, features_only=True, out_indices=[4])
|
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_small_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -559,8 +619,9 @@ def vit_small_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
|
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[3])
|
|
|
|
|
""" Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
backbone = resnet50d(pretrained=pretrained, features_only=True, out_indices=[3])
|
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_small_resnet50d_s3_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -568,8 +629,9 @@ def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
|
backbone = resnet26d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
|
""" Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
backbone = resnet26d(pretrained=pretrained, features_only=True, out_indices=[4])
|
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_resnet26d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -577,8 +639,9 @@ def vit_base_resnet26d_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_base_resnet50d_224(pretrained=False, **kwargs):
|
|
|
|
|
pretrained_backbone = kwargs.get('pretrained_backbone', True) # default to True for now, for testing
|
|
|
|
|
backbone = resnet50d(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
|
|
|
|
|
""" Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights.
|
|
|
|
|
"""
|
|
|
|
|
backbone = resnet50d(pretrained=pretrained, features_only=True, out_indices=[4])
|
|
|
|
|
model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, hybrid_backbone=backbone, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_base_resnet50d_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -586,6 +649,9 @@ def vit_base_resnet50d_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_deit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
|
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -593,6 +659,9 @@ def vit_deit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_deit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
|
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -600,6 +669,9 @@ def vit_deit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_deit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
|
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
@ -607,6 +679,9 @@ def vit_deit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def vit_deit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
|
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
|
|
|
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
|
|
|
"""
|
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
|
|
|
|
|
model = _create_vision_transformer('vit_deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
return model
|
|
|
|
|