Improving kwarg merging in more models

pull/1633/head
Ross Wightman 2 years ago committed by Ross Wightman
parent 94a91598c3
commit c0d7388a1b

@ -15,7 +15,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer
from ._builder import build_model_with_cfg from ._builder import build_model_with_cfg
from ._registry import register_model from ._registry import register_model
@ -33,6 +33,7 @@ def _cfg(url='', **kwargs):
default_cfgs = { default_cfgs = {
'dpn48b': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'dpn68': _cfg( 'dpn68': _cfg(
url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth'), url='https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth'),
'dpn68b': _cfg( 'dpn68b': _cfg(
@ -82,7 +83,16 @@ class BnActConv2d(nn.Module):
class DualPathBlock(nn.Module): class DualPathBlock(nn.Module):
def __init__( def __init__(
self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False): self,
in_chs,
num_1x1_a,
num_3x3_b,
num_1x1_c,
inc,
groups,
block_type='normal',
b=False,
):
super(DualPathBlock, self).__init__() super(DualPathBlock, self).__init__()
self.num_1x1_c = num_1x1_c self.num_1x1_c = num_1x1_c
self.inc = inc self.inc = inc
@ -167,16 +177,31 @@ class DualPathBlock(nn.Module):
class DPN(nn.Module): class DPN(nn.Module):
def __init__( def __init__(
self, small=False, num_init_features=64, k_r=96, groups=32, global_pool='avg', self,
b=False, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), output_stride=32, num_classes=1000,
num_classes=1000, in_chans=3, drop_rate=0., fc_act_layer=nn.ELU): in_chans=3,
output_stride=32,
global_pool='avg',
k_sec=(3, 4, 20, 3),
inc_sec=(16, 32, 24, 128),
k_r=96,
groups=32,
small=False,
num_init_features=64,
b=False,
drop_rate=0.,
norm_layer='batchnorm2d',
act_layer='relu',
fc_act_layer=nn.ELU,
):
super(DPN, self).__init__() super(DPN, self).__init__()
self.num_classes = num_classes self.num_classes = num_classes
self.drop_rate = drop_rate self.drop_rate = drop_rate
self.b = b self.b = b
assert output_stride == 32 # FIXME look into dilation support assert output_stride == 32 # FIXME look into dilation support
norm_layer = partial(BatchNormAct2d, eps=.001)
fc_norm_layer = partial(BatchNormAct2d, eps=.001, act_layer=fc_act_layer, inplace=False) norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=.001)
fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=.001, inplace=False)
bw_factor = 1 if small else 4 bw_factor = 1 if small else 4
blocks = OrderedDict() blocks = OrderedDict()
@ -291,49 +316,57 @@ def _create_dpn(variant, pretrained=False, **kwargs):
**kwargs) **kwargs)
@register_model
def dpn48b(pretrained=False, **kwargs):
model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu')
return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn68(pretrained=False, **kwargs): def dpn68(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32, small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), **kwargs) k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
return _create_dpn('dpn68', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn68', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn68b(pretrained=False, **kwargs): def dpn68b(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
small=True, num_init_features=10, k_r=128, groups=32, small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64), **kwargs) b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
return _create_dpn('dpn68b', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn92(pretrained=False, **kwargs): def dpn92(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
num_init_features=64, k_r=96, groups=32, num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), **kwargs) k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128))
return _create_dpn('dpn92', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn92', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn98(pretrained=False, **kwargs): def dpn98(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
num_init_features=96, k_r=160, groups=40, num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128), **kwargs) k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128))
return _create_dpn('dpn98', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn98', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn131(pretrained=False, **kwargs): def dpn131(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
num_init_features=128, k_r=160, groups=40, num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128), **kwargs) k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128))
return _create_dpn('dpn131', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn131', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
def dpn107(pretrained=False, **kwargs): def dpn107(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
num_init_features=128, k_r=200, groups=50, num_init_features=128, k_r=200, groups=50,
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128), **kwargs) k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128))
return _create_dpn('dpn107', pretrained=pretrained, **model_kwargs) return _create_dpn('dpn107', pretrained=pretrained, **dict(model_kwargs, **kwargs))

@ -1116,6 +1116,26 @@ class NormMlpHead(nn.Module):
return x return x
def _overlay_kwargs(cfg: MaxxVitCfg, **kwargs):
transformer_kwargs = {}
conv_kwargs = {}
base_kwargs = {}
for k, v in kwargs.items():
if k.startswith('transformer_'):
transformer_kwargs[k.replace('transformer_', '')] = v
elif k.startswith('conv_'):
conv_kwargs[k.replace('conv_', '')] = v
else:
base_kwargs[k] = v
cfg = replace(
cfg,
transformer_cfg=replace(cfg.transformer_cfg, **transformer_kwargs),
conv_cfg=replace(cfg.conv_cfg, **conv_kwargs),
**base_kwargs
)
return cfg
class MaxxVit(nn.Module): class MaxxVit(nn.Module):
""" CoaTNet + MaxVit base model. """ CoaTNet + MaxVit base model.
@ -1130,10 +1150,13 @@ class MaxxVit(nn.Module):
num_classes: int = 1000, num_classes: int = 1000,
global_pool: str = 'avg', global_pool: str = 'avg',
drop_rate: float = 0., drop_rate: float = 0.,
drop_path_rate: float = 0. drop_path_rate: float = 0.,
**kwargs,
): ):
super().__init__() super().__init__()
img_size = to_2tuple(img_size) img_size = to_2tuple(img_size)
if kwargs:
cfg = _overlay_kwargs(cfg, **kwargs)
transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size) transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size)
self.num_classes = num_classes self.num_classes = num_classes
self.global_pool = global_pool self.global_pool = global_pool

@ -156,8 +156,8 @@ def res2net50_26w_4s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4))
return _create_res2net('res2net50_26w_4s', pretrained, **model_args) return _create_res2net('res2net50_26w_4s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -167,8 +167,8 @@ def res2net101_26w_4s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4), **kwargs) block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4))
return _create_res2net('res2net101_26w_4s', pretrained, **model_args) return _create_res2net('res2net101_26w_4s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -178,8 +178,8 @@ def res2net50_26w_6s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6))
return _create_res2net('res2net50_26w_6s', pretrained, **model_args) return _create_res2net('res2net50_26w_6s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -189,8 +189,8 @@ def res2net50_26w_8s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8))
return _create_res2net('res2net50_26w_8s', pretrained, **model_args) return _create_res2net('res2net50_26w_8s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -200,8 +200,8 @@ def res2net50_48w_2s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2))
return _create_res2net('res2net50_48w_2s', pretrained, **model_args) return _create_res2net('res2net50_48w_2s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -211,8 +211,8 @@ def res2net50_14w_8s(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8))
return _create_res2net('res2net50_14w_8s', pretrained, **model_args) return _create_res2net('res2net50_14w_8s', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -222,5 +222,5 @@ def res2next50(pretrained=False, **kwargs):
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
""" """
model_args = dict( model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4), **kwargs) block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4))
return _create_res2net('res2next50', pretrained, **model_args) return _create_res2net('res2next50', pretrained, **dict(model_args, **kwargs))

@ -163,8 +163,8 @@ def resnest14d(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[1, 1, 1, 1], block=ResNestBottleneck, layers=[1, 1, 1, 1],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest14d', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest14d', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -174,8 +174,8 @@ def resnest26d(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[2, 2, 2, 2], block=ResNestBottleneck, layers=[2, 2, 2, 2],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest26d', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest26d', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -186,8 +186,8 @@ def resnest50d(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3], block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest50d', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest50d', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -198,8 +198,8 @@ def resnest101e(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 23, 3], block=ResNestBottleneck, layers=[3, 4, 23, 3],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest101e', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest101e', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -210,8 +210,8 @@ def resnest200e(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 24, 36, 3], block=ResNestBottleneck, layers=[3, 24, 36, 3],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest200e', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest200e', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -222,8 +222,8 @@ def resnest269e(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 30, 48, 8], block=ResNestBottleneck, layers=[3, 30, 48, 8],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) block_args=dict(radix=2, avd=True, avd_first=False))
return _create_resnest('resnest269e', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest269e', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -233,8 +233,8 @@ def resnest50d_4s2x40d(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3], block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2,
block_args=dict(radix=4, avd=True, avd_first=True), **kwargs) block_args=dict(radix=4, avd=True, avd_first=True))
return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **dict(model_kwargs, **kwargs))
@register_model @register_model
@ -244,5 +244,5 @@ def resnest50d_1s4x24d(pretrained=False, **kwargs):
model_kwargs = dict( model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3], block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4,
block_args=dict(radix=1, avd=True, avd_first=True), **kwargs) block_args=dict(radix=1, avd=True, avd_first=True))
return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **model_kwargs) return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **dict(model_kwargs, **kwargs))

@ -845,77 +845,72 @@ def _create_resnet(variant, pretrained=False, **kwargs):
def resnet10t(pretrained=False, **kwargs): def resnet10t(pretrained=False, **kwargs):
"""Constructs a ResNet-10-T model. """Constructs a ResNet-10-T model.
""" """
model_args = dict( model_args = dict(block=BasicBlock, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True)
block=BasicBlock, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True, **kwargs) return _create_resnet('resnet10t', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet10t', pretrained, **model_args)
@register_model @register_model
def resnet14t(pretrained=False, **kwargs): def resnet14t(pretrained=False, **kwargs):
"""Constructs a ResNet-14-T model. """Constructs a ResNet-14-T model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True)
block=Bottleneck, layers=[1, 1, 1, 1], stem_width=32, stem_type='deep_tiered', avg_down=True, **kwargs) return _create_resnet('resnet14t', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet14t', pretrained, **model_args)
@register_model @register_model
def resnet18(pretrained=False, **kwargs): def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model. """Constructs a ResNet-18 model.
""" """
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs) model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2])
return _create_resnet('resnet18', pretrained, **model_args) return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet18d(pretrained=False, **kwargs): def resnet18d(pretrained=False, **kwargs):
"""Constructs a ResNet-18-D model. """Constructs a ResNet-18-D model.
""" """
model_args = dict( model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True)
block=BasicBlock, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet18d', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet18d', pretrained, **model_args)
@register_model @register_model
def resnet34(pretrained=False, **kwargs): def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model. """Constructs a ResNet-34 model.
""" """
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3])
return _create_resnet('resnet34', pretrained, **model_args) return _create_resnet('resnet34', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet34d(pretrained=False, **kwargs): def resnet34d(pretrained=False, **kwargs):
"""Constructs a ResNet-34-D model. """Constructs a ResNet-34-D model.
""" """
model_args = dict( model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True)
block=BasicBlock, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet34d', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet34d', pretrained, **model_args)
@register_model @register_model
def resnet26(pretrained=False, **kwargs): def resnet26(pretrained=False, **kwargs):
"""Constructs a ResNet-26 model. """Constructs a ResNet-26 model.
""" """
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], **kwargs) model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2])
return _create_resnet('resnet26', pretrained, **model_args) return _create_resnet('resnet26', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet26t(pretrained=False, **kwargs): def resnet26t(pretrained=False, **kwargs):
"""Constructs a ResNet-26-T model. """Constructs a ResNet-26-T model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep_tiered', avg_down=True)
block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep_tiered', avg_down=True, **kwargs) return _create_resnet('resnet26t', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet26t', pretrained, **model_args)
@register_model @register_model
def resnet26d(pretrained=False, **kwargs): def resnet26d(pretrained=False, **kwargs):
"""Constructs a ResNet-26-D model. """Constructs a ResNet-26-D model.
""" """
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs) model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnet26d', pretrained, **model_args) return _create_resnet('resnet26d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -923,83 +918,79 @@ def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('resnet50', pretrained, **model_args) return _create_resnet('resnet50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet50d(pretrained=False, **kwargs) -> ResNet: def resnet50d(pretrained=False, **kwargs) -> ResNet:
"""Constructs a ResNet-50-D model. """Constructs a ResNet-50-D model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True)
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet50d', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet50d', pretrained, **model_args)
@register_model @register_model
def resnet50t(pretrained=False, **kwargs): def resnet50t(pretrained=False, **kwargs):
"""Constructs a ResNet-50-T model. """Constructs a ResNet-50-T model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True)
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True, **kwargs) return _create_resnet('resnet50t', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet50t', pretrained, **model_args)
@register_model @register_model
def resnet101(pretrained=False, **kwargs): def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3])
return _create_resnet('resnet101', pretrained, **model_args) return _create_resnet('resnet101', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet101d(pretrained=False, **kwargs): def resnet101d(pretrained=False, **kwargs):
"""Constructs a ResNet-101-D model. """Constructs a ResNet-101-D model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnet101d', pretrained, **model_args) return _create_resnet('resnet101d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet152(pretrained=False, **kwargs): def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3])
return _create_resnet('resnet152', pretrained, **model_args) return _create_resnet('resnet152', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet152d(pretrained=False, **kwargs): def resnet152d(pretrained=False, **kwargs):
"""Constructs a ResNet-152-D model. """Constructs a ResNet-152-D model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True)
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet152d', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet152d', pretrained, **model_args)
@register_model @register_model
def resnet200(pretrained=False, **kwargs): def resnet200(pretrained=False, **kwargs):
"""Constructs a ResNet-200 model. """Constructs a ResNet-200 model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3])
return _create_resnet('resnet200', pretrained, **model_args) return _create_resnet('resnet200', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnet200d(pretrained=False, **kwargs): def resnet200d(pretrained=False, **kwargs):
"""Constructs a ResNet-200-D model. """Constructs a ResNet-200-D model.
""" """
model_args = dict( model_args = dict(block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True)
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs) return _create_resnet('resnet200d', pretrained, **dict(model_args, **kwargs))
return _create_resnet('resnet200d', pretrained, **model_args)
@register_model @register_model
def tv_resnet34(pretrained=False, **kwargs): def tv_resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model with original Torchvision weights. """Constructs a ResNet-34 model with original Torchvision weights.
""" """
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3])
return _create_resnet('tv_resnet34', pretrained, **model_args) return _create_resnet('tv_resnet34', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1007,23 +998,23 @@ def tv_resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model with original Torchvision weights. """Constructs a ResNet-50 model with original Torchvision weights.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('tv_resnet50', pretrained, **model_args) return _create_resnet('tv_resnet50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def tv_resnet101(pretrained=False, **kwargs): def tv_resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model w/ Torchvision pretrained weights. """Constructs a ResNet-101 model w/ Torchvision pretrained weights.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3])
return _create_resnet('tv_resnet101', pretrained, **model_args) return _create_resnet('tv_resnet101', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def tv_resnet152(pretrained=False, **kwargs): def tv_resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model w/ Torchvision pretrained weights. """Constructs a ResNet-152 model w/ Torchvision pretrained weights.
""" """
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3])
return _create_resnet('tv_resnet152', pretrained, **model_args) return _create_resnet('tv_resnet152', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1034,8 +1025,8 @@ def wide_resnet50_2(pretrained=False, **kwargs):
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048. channels, and in Wide ResNet-50-2 has 2048-1024-2048.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], base_width=128, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], base_width=128)
return _create_resnet('wide_resnet50_2', pretrained, **model_args) return _create_resnet('wide_resnet50_2', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1045,8 +1036,8 @@ def wide_resnet101_2(pretrained=False, **kwargs):
which is twice larger in every block. The number of channels in outer 1x1 which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same. convolutions is the same.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], base_width=128, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], base_width=128)
return _create_resnet('wide_resnet101_2', pretrained, **model_args) return _create_resnet('wide_resnet101_2', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1061,8 +1052,8 @@ def resnet50_gn(pretrained=False, **kwargs):
def resnext50_32x4d(pretrained=False, **kwargs): def resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model. """Constructs a ResNeXt50-32x4d model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4)
return _create_resnet('resnext50_32x4d', pretrained, **model_args) return _create_resnet('resnext50_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1071,40 +1062,40 @@ def resnext50d_32x4d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
stem_width=32, stem_type='deep', avg_down=True, **kwargs) stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnext50d_32x4d', pretrained, **model_args) return _create_resnet('resnext50d_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnext101_32x4d(pretrained=False, **kwargs): def resnext101_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 32x4d model. """Constructs a ResNeXt-101 32x4d model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4)
return _create_resnet('resnext101_32x4d', pretrained, **model_args) return _create_resnet('resnext101_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnext101_32x8d(pretrained=False, **kwargs): def resnext101_32x8d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 32x8d model. """Constructs a ResNeXt-101 32x8d model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8)
return _create_resnet('resnext101_32x8d', pretrained, **model_args) return _create_resnet('resnext101_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnext101_64x4d(pretrained=False, **kwargs): def resnext101_64x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt101-64x4d model. """Constructs a ResNeXt101-64x4d model.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4)
return _create_resnet('resnext101_64x4d', pretrained, **model_args) return _create_resnet('resnext101_64x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def tv_resnext50_32x4d(pretrained=False, **kwargs): def tv_resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model with original Torchvision weights. """Constructs a ResNeXt50-32x4d model with original Torchvision weights.
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4)
return _create_resnet('tv_resnext50_32x4d', pretrained, **model_args) return _create_resnet('tv_resnext50_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1114,8 +1105,8 @@ def ig_resnext101_32x8d(pretrained=False, **kwargs):
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8)
return _create_resnet('ig_resnext101_32x8d', pretrained, **model_args) return _create_resnet('ig_resnext101_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1125,8 +1116,8 @@ def ig_resnext101_32x16d(pretrained=False, **kwargs):
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16)
return _create_resnet('ig_resnext101_32x16d', pretrained, **model_args) return _create_resnet('ig_resnext101_32x16d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1136,8 +1127,8 @@ def ig_resnext101_32x32d(pretrained=False, **kwargs):
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=32, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=32)
return _create_resnet('ig_resnext101_32x32d', pretrained, **model_args) return _create_resnet('ig_resnext101_32x32d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1147,8 +1138,8 @@ def ig_resnext101_32x48d(pretrained=False, **kwargs):
`"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_
Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/ Weights from https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=48, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=48)
return _create_resnet('ig_resnext101_32x48d', pretrained, **model_args) return _create_resnet('ig_resnext101_32x48d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1157,8 +1148,8 @@ def ssl_resnet18(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs) model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2])
return _create_resnet('ssl_resnet18', pretrained, **model_args) return _create_resnet('ssl_resnet18', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1168,7 +1159,7 @@ def ssl_resnet50(pretrained=False, **kwargs):
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('ssl_resnet50', pretrained, **model_args) return _create_resnet('ssl_resnet50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1177,8 +1168,8 @@ def ssl_resnext50_32x4d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4)
return _create_resnet('ssl_resnext50_32x4d', pretrained, **model_args) return _create_resnet('ssl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1187,8 +1178,8 @@ def ssl_resnext101_32x4d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4)
return _create_resnet('ssl_resnext101_32x4d', pretrained, **model_args) return _create_resnet('ssl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1197,8 +1188,8 @@ def ssl_resnext101_32x8d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8)
return _create_resnet('ssl_resnext101_32x8d', pretrained, **model_args) return _create_resnet('ssl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1207,8 +1198,8 @@ def ssl_resnext101_32x16d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16)
return _create_resnet('ssl_resnext101_32x16d', pretrained, **model_args) return _create_resnet('ssl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1218,8 +1209,8 @@ def swsl_resnet18(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs) model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2])
return _create_resnet('swsl_resnet18', pretrained, **model_args) return _create_resnet('swsl_resnet18', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1230,7 +1221,7 @@ def swsl_resnet50(pretrained=False, **kwargs):
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('swsl_resnet50', pretrained, **model_args) return _create_resnet('swsl_resnet50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1240,8 +1231,8 @@ def swsl_resnext50_32x4d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4)
return _create_resnet('swsl_resnext50_32x4d', pretrained, **model_args) return _create_resnet('swsl_resnext50_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1251,8 +1242,8 @@ def swsl_resnext101_32x4d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4)
return _create_resnet('swsl_resnext101_32x4d', pretrained, **model_args) return _create_resnet('swsl_resnext101_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1262,8 +1253,8 @@ def swsl_resnext101_32x8d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8)
return _create_resnet('swsl_resnext101_32x8d', pretrained, **model_args) return _create_resnet('swsl_resnext101_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1273,8 +1264,8 @@ def swsl_resnext101_32x16d(pretrained=False, **kwargs):
`"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_ `"Billion-scale Semi-Supervised Learning for Image Classification" <https://arxiv.org/abs/1905.00546>`_
Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/ Weights from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models/
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=16)
return _create_resnet('swsl_resnext101_32x16d', pretrained, **model_args) return _create_resnet('swsl_resnext101_32x16d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1285,8 +1276,8 @@ def ecaresnet26t(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'), **kwargs) stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet26t', pretrained, **model_args) return _create_resnet('ecaresnet26t', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1295,8 +1286,8 @@ def ecaresnet50d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet50d', pretrained, **model_args) return _create_resnet('ecaresnet50d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1306,7 +1297,7 @@ def ecaresnet50d_pruned(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **model_args) return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **model_args)
@ -1317,8 +1308,8 @@ def ecaresnet50t(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'), **kwargs) stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet50t', pretrained, **model_args) return _create_resnet('ecaresnet50t', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1327,8 +1318,8 @@ def ecaresnetlight(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[1, 1, 11, 3], stem_width=32, avg_down=True, block=Bottleneck, layers=[1, 1, 11, 3], stem_width=32, avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnetlight', pretrained, **model_args) return _create_resnet('ecaresnetlight', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1337,8 +1328,8 @@ def ecaresnet101d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet101d', pretrained, **model_args) return _create_resnet('ecaresnet101d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1348,7 +1339,7 @@ def ecaresnet101d_pruned(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **model_args) return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **model_args)
@ -1358,8 +1349,8 @@ def ecaresnet200d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet200d', pretrained, **model_args) return _create_resnet('ecaresnet200d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1368,8 +1359,8 @@ def ecaresnet269d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='eca'), **kwargs) block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnet269d', pretrained, **model_args) return _create_resnet('ecaresnet269d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1380,8 +1371,8 @@ def ecaresnext26t_32x4d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'), **kwargs) stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnext26t_32x4d', pretrained, **model_args) return _create_resnet('ecaresnext26t_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1392,54 +1383,54 @@ def ecaresnext50t_32x4d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'), **kwargs) stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca'))
return _create_resnet('ecaresnext50t_32x4d', pretrained, **model_args) return _create_resnet('ecaresnext50t_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet18(pretrained=False, **kwargs): def seresnet18(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se'), **kwargs) model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], block_args=dict(attn_layer='se'))
return _create_resnet('seresnet18', pretrained, **model_args) return _create_resnet('seresnet18', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet34(pretrained=False, **kwargs): def seresnet34(pretrained=False, **kwargs):
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'), **kwargs) model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'))
return _create_resnet('seresnet34', pretrained, **model_args) return _create_resnet('seresnet34', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet50(pretrained=False, **kwargs): def seresnet50(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'), **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='se'))
return _create_resnet('seresnet50', pretrained, **model_args) return _create_resnet('seresnet50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet50t(pretrained=False, **kwargs): def seresnet50t(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered', avg_down=True, block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep_tiered',
block_args=dict(attn_layer='se'), **kwargs) avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnet50t', pretrained, **model_args) return _create_resnet('seresnet50t', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet101(pretrained=False, **kwargs): def seresnet101(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='se'), **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], block_args=dict(attn_layer='se'))
return _create_resnet('seresnet101', pretrained, **model_args) return _create_resnet('seresnet101', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet152(pretrained=False, **kwargs): def seresnet152(pretrained=False, **kwargs):
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='se'), **kwargs) model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], block_args=dict(attn_layer='se'))
return _create_resnet('seresnet152', pretrained, **model_args) return _create_resnet('seresnet152', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnet152d(pretrained=False, **kwargs): def seresnet152d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep',
block_args=dict(attn_layer='se'), **kwargs) avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnet152d', pretrained, **model_args) return _create_resnet('seresnet152d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1447,9 +1438,9 @@ def seresnet200d(pretrained=False, **kwargs):
"""Constructs a ResNet-200-D model with SE attn. """Constructs a ResNet-200-D model with SE attn.
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep',
block_args=dict(attn_layer='se'), **kwargs) avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnet200d', pretrained, **model_args) return _create_resnet('seresnet200d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1457,9 +1448,9 @@ def seresnet269d(pretrained=False, **kwargs):
"""Constructs a ResNet-269-D model with SE attn. """Constructs a ResNet-269-D model with SE attn.
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep', avg_down=True, block=Bottleneck, layers=[3, 30, 48, 8], stem_width=32, stem_type='deep',
block_args=dict(attn_layer='se'), **kwargs) avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnet269d', pretrained, **model_args) return _create_resnet('seresnet269d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1470,8 +1461,8 @@ def seresnext26d_32x4d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'), **kwargs) stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnext26d_32x4d', pretrained, **model_args) return _create_resnet('seresnext26d_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1482,8 +1473,8 @@ def seresnext26t_32x4d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32, block=Bottleneck, layers=[2, 2, 2, 2], cardinality=32, base_width=4, stem_width=32,
stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se'), **kwargs) stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnext26t_32x4d', pretrained, **model_args) return _create_resnet('seresnext26t_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1499,24 +1490,24 @@ def seresnext26tn_32x4d(pretrained=False, **kwargs):
def seresnext50_32x4d(pretrained=False, **kwargs): def seresnext50_32x4d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='se'), **kwargs) block_args=dict(attn_layer='se'))
return _create_resnet('seresnext50_32x4d', pretrained, **model_args) return _create_resnet('seresnext50_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnext101_32x4d(pretrained=False, **kwargs): def seresnext101_32x4d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer='se'), **kwargs) block_args=dict(attn_layer='se'))
return _create_resnet('seresnext101_32x4d', pretrained, **model_args) return _create_resnet('seresnext101_32x4d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def seresnext101_32x8d(pretrained=False, **kwargs): def seresnext101_32x8d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8,
block_args=dict(attn_layer='se'), **kwargs) block_args=dict(attn_layer='se'))
return _create_resnet('seresnext101_32x8d', pretrained, **model_args) return _create_resnet('seresnext101_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1524,32 +1515,32 @@ def seresnext101d_32x8d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8,
stem_width=32, stem_type='deep', avg_down=True, stem_width=32, stem_type='deep', avg_down=True,
block_args=dict(attn_layer='se'), **kwargs) block_args=dict(attn_layer='se'))
return _create_resnet('seresnext101d_32x8d', pretrained, **model_args) return _create_resnet('seresnext101d_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def senet154(pretrained=False, **kwargs): def senet154(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep', block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep',
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se'), **kwargs) down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se'))
return _create_resnet('senet154', pretrained, **model_args) return _create_resnet('senet154', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnetblur18(pretrained=False, **kwargs): def resnetblur18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model with blur anti-aliasing """Constructs a ResNet-18 model with blur anti-aliasing
""" """
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], aa_layer=BlurPool2d, **kwargs) model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], aa_layer=BlurPool2d)
return _create_resnet('resnetblur18', pretrained, **model_args) return _create_resnet('resnetblur18', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnetblur50(pretrained=False, **kwargs): def resnetblur50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model with blur anti-aliasing """Constructs a ResNet-50 model with blur anti-aliasing
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d)
return _create_resnet('resnetblur50', pretrained, **model_args) return _create_resnet('resnetblur50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1558,8 +1549,8 @@ def resnetblur50d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d, block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=BlurPool2d,
stem_width=32, stem_type='deep', avg_down=True, **kwargs) stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnetblur50d', pretrained, **model_args) return _create_resnet('resnetblur50d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1568,16 +1559,25 @@ def resnetblur101d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=BlurPool2d, block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=BlurPool2d,
stem_width=32, stem_type='deep', avg_down=True, **kwargs) stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnetblur101d', pretrained, **model_args) return _create_resnet('resnetblur101d', pretrained, **dict(model_args, **kwargs))
@register_model
def resnetaa34d(pretrained=False, **kwargs):
"""Constructs a ResNet-34-D model w/ avgpool anti-aliasing
"""
model_args = dict(
block=BasicBlock, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnetaa34d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def resnetaa50(pretrained=False, **kwargs): def resnetaa50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model with avgpool anti-aliasing """Constructs a ResNet-50 model with avgpool anti-aliasing
""" """
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, **kwargs) model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d)
return _create_resnet('resnetaa50', pretrained, **model_args) return _create_resnet('resnetaa50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1586,8 +1586,8 @@ def resnetaa50d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d,
stem_width=32, stem_type='deep', avg_down=True, **kwargs) stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnetaa50d', pretrained, **model_args) return _create_resnet('resnetaa50d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1596,8 +1596,8 @@ def resnetaa101d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=nn.AvgPool2d, block=Bottleneck, layers=[3, 4, 23, 3], aa_layer=nn.AvgPool2d,
stem_width=32, stem_type='deep', avg_down=True, **kwargs) stem_width=32, stem_type='deep', avg_down=True)
return _create_resnet('resnetaa101d', pretrained, **model_args) return _create_resnet('resnetaa101d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1606,8 +1606,8 @@ def seresnetaa50d(pretrained=False, **kwargs):
""" """
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d, block=Bottleneck, layers=[3, 4, 6, 3], aa_layer=nn.AvgPool2d,
stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'), **kwargs) stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se'))
return _create_resnet('seresnetaa50d', pretrained, **model_args) return _create_resnet('seresnetaa50d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1617,8 +1617,8 @@ def seresnextaa101d_32x8d(pretrained=False, **kwargs):
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8, block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=8,
stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d,
block_args=dict(attn_layer='se'), **kwargs) block_args=dict(attn_layer='se'))
return _create_resnet('seresnextaa101d_32x8d', pretrained, **model_args) return _create_resnet('seresnextaa101d_32x8d', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1630,8 +1630,8 @@ def resnetrs50(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs50', pretrained, **model_args) return _create_resnet('resnetrs50', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1643,8 +1643,8 @@ def resnetrs101(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs101', pretrained, **model_args) return _create_resnet('resnetrs101', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1656,8 +1656,8 @@ def resnetrs152(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs152', pretrained, **model_args) return _create_resnet('resnetrs152', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1669,8 +1669,8 @@ def resnetrs200(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs200', pretrained, **model_args) return _create_resnet('resnetrs200', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1682,8 +1682,8 @@ def resnetrs270(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs270', pretrained, **model_args) return _create_resnet('resnetrs270', pretrained, **dict(model_args, **kwargs))
@ -1696,8 +1696,8 @@ def resnetrs350(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs350', pretrained, **model_args) return _create_resnet('resnetrs350', pretrained, **dict(model_args, **kwargs))
@register_model @register_model
@ -1709,5 +1709,5 @@ def resnetrs420(pretrained=False, **kwargs):
attn_layer = partial(get_attn('se'), rd_ratio=0.25) attn_layer = partial(get_attn('se'), rd_ratio=0.25)
model_args = dict( model_args = dict(
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_pool=True, block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_pool=True,
avg_down=True, block_args=dict(attn_layer=attn_layer), **kwargs) avg_down=True, block_args=dict(attn_layer=attn_layer))
return _create_resnet('resnetrs420', pretrained, **model_args) return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs))

Loading…
Cancel
Save